30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Grundrechenarten bis 1 Million – Gleichungen lösen mit Umkehraufgaben

Bewertung

Ø 4.2 / 72 Bewertungen

Die Autor*innen
Avatar
Mathe Grundschulteam
Grundrechenarten bis 1 Million – Gleichungen lösen mit Umkehraufgaben
lernst du in der 3. Klasse - 4. Klasse

Beschreibung Grundrechenarten bis 1 Million – Gleichungen lösen mit Umkehraufgaben

In dem Video lernst du, eine unbekannte Zahl durch Rechnung zu finden. Dafür stellst du eine Gleichung auf, die ein leeres Kästchen an der Stelle der unbekannten Zahl enthält. Die Lösung erhältst du meist durch eine Umkehraufgabe. Das heißt, zum Beispiel: Wenn deine Gleichung eine Plusaufgabe ist, so ist die Umkehraufgabe eine Minusaufgabe, durch die du die unbekannte Zahl ausrechnen kannst. Das lernst du in diesem Video an einigen Beispielen, dann fällt dir das Lösen von Gleichungen bestimmt nicht mehr schwer.

13 Kommentare

13 Kommentare
  1. Sehr Hilfreich👍🏻
    Macht mehr Videos von Nico und Lily

    Von Mariiiiiiiiiii, vor 7 Monaten
  2. das viedeo war echt super, genauso wie die übungen:-)

    Von Khelfferich, vor mehr als einem Jahr
  3. Ich fand das Video gut gemacht und verständlich

    Von Moussanouh5, vor fast 2 Jahren
  4. armer nico!

    Von Decotrade, vor etwa 2 Jahren
  5. diese UMKERAUFGABEN kennen ich schon ein bischen von der schule das video hat mir mehr geholfen vielen dank es macht spaß mit euch zu lernen!

    Von Decotrade, vor etwa 2 Jahren
Mehr Kommentare

Grundrechenarten bis 1 Million – Gleichungen lösen mit Umkehraufgaben Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Grundrechenarten bis 1 Million – Gleichungen lösen mit Umkehraufgaben kannst du es wiederholen und üben.
  • Was ist eine Gleichung? Beschreibe.

    Tipps

    Wie viele Flaschen muss Niko auffüllen?

    Du rechnest 144 - 97 = 47.

    Minusaufgaben werden durch Plusaufgaben umgekehrt.

    Beide sind Strichrechnungsaufgaben.

    Wie viele Tafeln Schokolade verteilt Niko auf jedem Tisch?

    Hier rechnest du 208 : 13 = 16.

    Lösung

    Wie viele Flaschen muss er auffüllen? 97 Flaschen sind schon voll aber 144 sollen voll werden. Die unbekannte Zahl kann durch ein Kästchen ersetzt werden:

    97 + $\Box$ = 144.

    Dies ist eine Gleichung. Niko will also diese Gleichung lösen. Dafür wendet er eine Umkehraufgabe an. Die Umkehraufgabe von einer Plusaufgabe ist eine Minusaufgabe.

    Also rechnet Niko $\Box$ = 144 - 97 = 47.

    Er muss 47 Flaschen auffüllen.

    Jetzt muss Niko noch die Schokoladentafeln verteilen. Er hat insgesamt 208. Diese soll er auf 13 Tische verteilen. Er kennt die Anzahl der Schokoladentafeln pro Tisch noch nicht. Er verwendet wieder ein Kästchen:

    $\Box$ $\cdot$ 13 = 208.

    Die Umkehraufgabe zu mal nehmen ist teilen. Also macht Niko das

    $\Box$ = 208 : 13 = 16.

    Auf jeden Tisch muss er 16 Tafeln Schokolade legen.

  • Wie viele Flaschen muss der Lagerist nachfüllen? Finde die Lösung der Gleichung.

    Tipps

    In der Gleichung steht eine Plusaufgabe.

    Die Umkehraufgabe zu einer Plusaufgabe ist eine Minusaufgabe.

    Die ziehst von der größeren Zahl die kleinere Zahl ab.

    Lösung

    Der Lagerist möchte wissen, wie viele Flaschen er auffüllen muss. Diese Zahl kennt er noch nicht. Er verwendet dafür ein Kästchen.

    Er weiß, dass 110216 Flaschen noch da sind. Es sollen nach dem Auffüllen wieder 190090 Flaschen da sein.

    Er rechnet: 110216 + $\Box$ = 190090.

    Weißt du schon, wie die Umkehraufgabe aussieht?

    $\Box$ = 190090 - 110216 = 79874

    Wir machen die Probe: 110216 + 79874 = 190090. Das stimmt!

    Der Lagerist muss 79874 Flaschen auffüllen.

    Hoffentlich hat er zur Stärkung genügend Schokolade da.

  • Welche Gleichung musst du hier lösen? Ordne jeder Aufgabe die Gleichung zu.

    Tipps

    Welche Zahl suchst du? Verwende für die Zahl ein Kästchen.

    Stelle dann die Gleichung auf.

    Lösung

    Zu jeder Aufgabe möchtest du eine Gleichung aufstellen. Nach welcher Zahl suchst du? Verwende für die Zahl ein Kästchen.

    Die Schokokäfer, die Paul bereits hat, zusammen mit denen, die er kauft, ergeben 26. Du kannst dies als Gleichung aufschreiben. Verwende für die gesuchte Zahl ein Kästchen: 12 + $\Box$ = 26.

    Lilli möchte ihrer Schwester 14 von ihren Gummibärchen schenken. Es sollen 12 übrig bleiben. Die Zahl der Gummibärchen, die Lilli hat, kennst du noch nicht. Verwende hierfür ein Kästchen: $\Box$ - 14 = 12.

    Anna verteilt Bonbons an drei Kinder, 10 Bonbons für jedes Kind. Du weißt nicht, wie viele Bonbons Anna insgesamt verteilt. Für diese Zahl verwendest du ein Kästchen: $\Box$ : 3 =10.

    Luke verteilt 30 Lakrizstangen auf drei gleich große Haufen: Die Zahl der Lakritzstangen ersetzt du durch ein Kästchen. $\Box$ $\cdot$ 3 = 30.

  • Wie lautet die Umkehraufgabe? Gib zu jeder Gleichung die Umkehraufgabe an.

    Tipps

    Merke dir:

    • Die Umkehraufgabe zu + ist -.
    • Die Umkehraufgabe zu - ist +.
    • Die Umkehraufgabe zu $\cdot$ ist :.
    • Die Umkehraufgabe zu : ist $\cdot$.

    Du kannst die Umkehraufgabe auch rechnen. Mache dann eine Probe.

    Lösung

    Um Gleichungen zu lösen, verwendest du die Umkehraufgaben.

    Merke dir

    • Die Umkehraufgabe zu + ist -.
    • Die Umkehraufgabe zu - ist +.
    • Die Umkehraufgabe zu $\cdot$ ist :.
    • Die Umkehraufgabe zu : ist $\cdot$.
    Lass uns das mal an ein paar Aufgaben üben:

    • 12 + $\Box$ = 26. Die Umkehraufgabe ist eine Minusaufgabe: $\Box$ = 26 - 12 = 14.
    • $\Box$ - 14 = 12. Die Umkehraufgabe ist eine Plusaufgabe: $\Box$ = 12 + 14 = 26.
    • $\Box$ : 3 = 10. Die Umkehraufgabe ist eine Malaufgabe: $\Box$ = 10 $\cdot$ 3 = 30.
    • $\Box$ $\cdot$ 3 = 30. Die Umkehraufgabe ist eine Geteiltaufgabe: $\Box$ = 30 : 3 =10.
  • Kennst du die Umkehraufgabe? Gib zu jedem Rechenzeichen das Rechenzeichen der Umkehraufgabe an.

    Tipps

    Kennst du schon die verschieden Grundrechenarten?

    Plus (+) und Minus (-) sind Strichrechenarten.

    Mal ($\cdot$) und Geteiltdurch (:) sind Punktrechenarten.

    Gleichungen kannst du mit Umkehraufgaben lösen. Zu jeder Gleichung gehört eine Umkehraufgabe.

    Schau dir ein Beispiel an:

    Wenn du die Gleichung 2 + ? = 4 lösen möchtest, kannst du umgekehrt 4 - 2 = 2 rechnen. Die Lösung ist also die 2.

    Mach doch mal die Probe: 2 + 2 = 4. Das stimmt.

    Lösung

    Du möchtest eine Gleichung lösen. Dann verwendest du die Umkehraufgabe.

    • Die Umkehraufgabe zu + ist -.
    • Die Umkehraufgabe zu - ist +.
    • Die Umkehraufgabe zu $\cdot$ ist :.
    • Die Umkehraufgabe zu : ist $\cdot$.
  • Welche Zahl fehlt in den Gleichungen? Gib diese an.

    Tipps

    Merke dir:

    • Die Umkehraufgabe zu + ist -.
    • Die Umkehraufgabe zu - ist +.
    • Die Umkehraufgabe zu $\cdot$ ist : .
    • Die Umkehraufgabe zu : ist $\cdot$.

    Du kannst immer eine Probe durchführen. Setze dazu dein Ergebnis in das Kästchen ein.

    Lösung

    Hier hast du vier Gleichungen gegeben. Diese möchtest du lösen. Also stellst du zu jeder der Gleichungen die Umkehraufgabe auf.

    $\Box$ - 123456 = 222222 ist eine Minusaufgabe. Die Umkehraufgabe ist eine Plusaufgabe:

    $\Box$ = 222222 + 123456 = 345678.

    $\Box$ : 7 = 58609 ist eine Geteiltaufgabe. Die Umkehraufgabe ist eine Malaufgabe:

    $\Box$ = 58609 $\cdot$ 7 = 410263.

    112233 + $\Box$ = 655443 ist eine Plusaufgabe. Die Umkehraufgabe ist eine Minusaufgabe:

    $\Box$ = 655443 - 112233 = 543210.

    $\Box$ - 123456 = 543210 ist eine Minusaufgabe. Die Umkehraufgabe ist eine Plusaufgabe:

    $\Box$ = 543210 + 123456 = 666666.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

10.815

Lernvideos

44.233

Übungen

38.878

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden