Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Geometrische Grundkörper identifizieren

Tauche ein in die Welt der geometrischen Grundkörper! Wir zeigen dir, wie du Würfel, Quader, Zylinder und weitere Figuren anhand ihrer Ecken, Kanten und Flächen erkennst. Erfahre, welche besonderen Eigenschaften sie haben und wie sie sich unterscheiden. Interessiert? Entdecke mehr über diese faszinierenden dreidimensionalen Objekte in unserem Artikel!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Geometrische Grundkörper identifizieren

Wie viele Ecken hat ein Würfel?

1/5
Bewertung

Ø 4.0 / 598 Bewertungen
Die Autor*innen
Avatar
Team Digital
Geometrische Grundkörper identifizieren
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Geometrische Grundkörper identifizieren Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Geometrische Grundkörper identifizieren kannst du es wiederholen und üben.
  • Tipps

    Auf dem Bild hier siehst du einen Würfel.

    Ein Würfel ist ein geometrischer Körper.

    Das Quadrat ist eine zweidimensionale oder ebene Figur. Sie besitzt genau eine Fläche.

    Ein Quadrat ist kein Körper.

    Die hier abgebildete Figur setzt sich aus drei geometrischen Grundkörpern zusammen.

    Lösung

    Um ihre Hausaufgabe bearbeiten zu können, muss Noa die Definition für einen geometrischen Körper kennen. Diese lautet wie folgt:

    Geometrische Körper sind dreidimensionale Figuren, die durch ihre Oberfläche beschrieben werden können.

    Hier siehst du diese geometrischen Grundkörper:

    • Würfel
    • Quader
    • Zylinder
    • quadratische Pyramide
    • Kegel
    • Kugel
    Sie unterscheiden sich unter anderem in der Anzahl ihrer Ecken, Kanten und Flächen.

    Hinweis: Die Definition bezieht sich allgemein auf den Begriff „geometrischer Körper“. Der Begriff „Grundkörper“ fasst die hier dargestellten Körper zusammen. Es gibt noch weitere geometrische Körper, die nicht zu den Grundkörpern gehören.

  • Tipps

    In der Abbildung siehst du einen Quader, dessen Ecken markiert sind.

    Die allgemeine Definition für eine Ecke lautet:

    Eine Ecke liegt dann vor, wenn an einer Stelle mindestens $3$ Kanten aufeinandertreffen.

    Eine Kante findest du dort, wo zwei Flächen aneinandergrenzen.

    Lösung

    Bevor wir diese Aufgabe gemeinsam lösen, klären wir zunächst die Begriffe „Ecke“, „Kante“ und „Fläche“:

    • Flächen kennst du eventuell schon. Beispiele sind das Quadrat, das Rechteck oder der Kreis.
    • Kanten findest du dort, wo zwei Flächen aneinandergrenzen.
    • Ecken tauchen dort auf, wo mindestens $3$ Kanten aufeinandertreffen.

    Jetzt, da wir die Definitionen dieser Begriffe behandelt haben, können wir die Eigenschaften der gegebenen geometrischen Grundkörper angeben:

    • Quader: $8$ Ecken, $12$ Kanten, $6$ Flächen
    • Kugel: $0$ Ecken, $0$ Kanten, $1$ Fläche
    • Zylinder: $0$ Ecken, $2$ Kanten, $3$ Flächen
    • quadratische Pyramide: $5$ Ecken, $8$ Kanten, $5$ Flächen

    Achtung: Der geometrische Körper Kegel besitzt eine Spitze. Obwohl die obige Regel für eine Ecke hier nicht zutrifft, definieren wir diesen Punkt als Ecke. Dies ist ein Sonderfall.

  • Tipps

    Bestimme zunächst die Anzahl der Ecken, Kanten und Flächen des jeweiligen Körpers. Bilde anschließend die Summe dieser Anzahlen und sortiere sie.

    Schaue dir folgendes Beispiel an:

    Der Würfel hat $8$ Ecken, $12$ Kanten und $6$ Flächen.

    Als Summe dieser Anzahlen ergibt sich: $8+12+6=26$.

    Der Quader unterscheidet sich bezüglich der Anzahl von Ecken, Kanten und Flächen nicht vom Würfel.

    Lösung

    Lass uns nun gemeinsam die Anzahl der Ecken, Kanten und Flächen der jeweiligen Körper bestimmen:

    • Quader: $8$ Ecken, $12$ Kanten, $6$ Flächen
    • Kugel: $0$ Ecken, $0$ Kanten, $1$ Fläche
    • Zylinder: $0$ Ecken, $2$ Kanten, $3$ Flächen
    • quadratische Pyramide: $5$ Ecken, $8$ Kanten, $5$ Flächen
    • Kegel: $1$ Ecke, $1$ Kante, $2$ Flächen

    Demnach erhalten wir folgende Summen:

    • Quader: $8+12+6=26$
    • Kugel: $0+0+1=1$
    • Zylinder: $0+2+3=5$
    • quadratische Pyramide: $5+8+5=18$
    • Kegel: $1+1+2=4$

    Jetzt sortieren wir die geometrischen Körper ausgehend von der höchsten Summe:

    • Quader
    • quadratische Pyramide
    • Zylinder
    • Kegel
    • Kugel

  • Tipps

    Die meisten geometrischen Grundkörper kannst du zu ihren Netzen aufklappen (Ausnahme: Kugel).

    Klappst du beispielsweise die Flächen einer quadratischen Pyramide auf, so erhältst du das hier abgebildete Netz.

    Ein Würfel setzt sich aus $6$ quadratischen Flächen zusammen.

    Hier siehst du alle geometrischen Grundkörper mit den Bezeichnungen.

    Lösung

    Zunächst überlegen wir uns, aus welchen Flächen sich die uns bekannten geometrischen Grundkörper zusammensetzen:

    • Der Würfel besitzt $6$ gleich große quadratische Flächen.
    • Der Quader hat $6$ rechteckige Flächen. Dabei sind die sich gegenüberliegenden Flächen stets gleich groß.
    • Der Zylinder setzt sich aus zwei gleich großen Kreisen und einem Rechteck zusammen.
    • Der Kegel hat eine kreisförmige Grundfläche und die Mantelfläche entspricht einem Kreisausschnitt.
    • Die quadratische Pyramide hat eine quadratische Grundfläche und die Seitenflächen entsprechen $4$ kongruenten gleichschenkligen Dreiecken.
    • Die Kugel besteht nur aus einer Fläche. Es ist jedoch nicht möglich, ein Körpernetz der Kugel zu erstellen.

    Demnach ordnen wir den gegebenen Körpernetzen folgende Körper zu:

    • 1. Netz: Kegel
    • 2. Netz: Zylinder
    • 3. Netz: Quader
    • 4. Netz: Würfel

  • Tipps

    Die quadratische Pyramide besitzt $5$ Ecken, $8$ Kanten und $5$ Flächen.

    Der Zylinder hat keine Ecken.

    Die Körper Quader und Würfel stimmen bezüglich der Anzahl ihrer Ecken, Kanten und Flächen überein.
    Bei einem Würfel sind jedoch alle Kanten gleich lang, während bei einem Quader nur die sich gegenüberliegenden Kanten gleich lang sind.

    Lösung

    In der Abbildung siehst du die gegebenen geometrischen Grundkörper mit ihren jeweiligen Bezeichnungen. Diese geometrischen Grundkörper besitzen folgende Eigenschaften im Bezug auf die Anzahl der Ecken, Kanten und Flächen:

    • Würfel: $8$ Ecken, $12$ Kanten, $6$ Flächen
    • Quader: $8$ Ecken, $12$ Kanten, $6$ Flächen
    • Zylinder: $0$ Ecken, $2$ Kanten, $3$ Flächen
    • quadratische Pyramide: $5$ Ecken, $8$ Kanten, $5$ Flächen
    • Kegel: $1$ Ecke, $1$ Kante, $2$ Flächen
    • Kugel: $0$ Ecken, $0$ Kanten, $1$ Fläche

  • Tipps

    Stelle dir vor, du faltest diese Netze entlang der Kanten zu einem Körper zusammen. Welches Netz ist dann nicht zu einem Quader formbar?

    Du kannst auch „rückwärts“ vorgehen:
    Auf welche Arten kannst du einen Quader auffalten?

    Lösung

    Hier dargestellt ist das Körpernetz, das sich nicht zu einem Quader zusammenfalten lässt. Wie du siehst, würdest du beim Zusammenfalten zwei sich überlappende Flächen erhalten. Es kommt eine Fläche also doppelt vor. Die gegenüberliegende Fläche kommt hingegen gar nicht vor und würde in deinem zusammengefalteten Quader fehlen.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.214

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden