Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Ganze Zahlen multiplizieren

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 75 Bewertungen
Die Autor*innen
Avatar
Team Digital
Ganze Zahlen multiplizieren
lernst du in der 5. Klasse - 6. Klasse

Ganze Zahlen multiplizieren Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Ganze Zahlen multiplizieren kannst du es wiederholen und üben.
  • Bestimme mittels Multiplikation die Position auf dem Zahlenstrahl.

    Tipps

    Bei der Zeitangabe „vor zwei Stunden“ handelt es sich um eine vergangene Zeit. In deiner Rechnung kannst du diese mit einem negativen Vorzeichen berücksichtigen.

    Die gesuchte Position entspricht der zurückgelegten Strecke. Diese erhältst du wie folgt:

    Strecke $=$ Geschwindigkeit $\cdot$ Zeit.

    Lösung

    Bevor wir die vier Fälle betrachten, halten wir Folgendes fest:

    • Richtung Osten: nach rechts auf dem Zahlenstrahl $\rightarrow$ positives Vorzeichen
    • Richtung Westen: nach links auf dem Zahlenstrahl $\rightarrow$ negatives Vorzeichen
    • nach 2 Stunden: Zeit in der Zukunft $\rightarrow$ positives Vorzeichen
    • vor 2 Stunden: Zeit in der Vergangenheit $\rightarrow$ negatives Vorzeichen
    Damit können wir nun die Berechnungen für alle vier Fälle durchführen. Wir erhalten:

    Fall 1
    Ein Auto fährt Richtung Osten an Max vorbei. Auf welcher Position des Zahlenstrahls befindet sich das Auto nach $2$ Stunden?

    $2\cdot 50=100$

    Fall 2
    Ein Auto fährt Richtung Westen an Max vorbei. Auf welcher Position des Zahlenstrahls befindet sich das Auto nach $2$ Stunden?

    $2\cdot (-50)=-100$

    Fall 3
    Ein Auto fährt Richtung Osten an Max vorbei. Auf welcher Position des Zahlenstrahls befand sich das Auto vor $2$ Stunden?

    $(-2)\cdot 50=-100$

    Fall 4:
    Ein Auto fährt Richtung Westen an Max vorbei. Auf welcher Position des Zahlenstrahls befand sich das Auto vor $2$ Stunden?

    $(-2)\cdot (-50)=100$

  • Gib an, welche Regeln bei der Multiplikation von Zahlen gelten.

    Tipps

    Da eine Multiplikation die mehrfache Addition desselben Summanden ist, kannst du den Term $3\cdot (-5)$ auch darstellen als:

    $-5+(-5)+(-5)=-15$.

    Für die obige Addition erhalten wir ein negatives Ergebnis. Dieses Ergebnis entspricht ebenfalls dem Resultat für $3\cdot(-5)$. Was stellst du nun bezüglich der Vorzeichen der Faktoren fest?

    Wenn $3\cdot (-5)=-15$ ist, dann gilt:

    $-15 : 3=-5$.

    Lösung

    Sowohl bei der Multiplikation als auch bei der Division von Zahlen gelten folgende Regeln:

    $ \begin{array}{lllll} + \cdot + & \Rightarrow & + && \text{Plus mal Plus ergibt Plus.} \\ + \cdot - & \Rightarrow & - && \text{Plus mal Minus ergibt Minus.} \\ - \cdot + & \Rightarrow & - && \text{Minus mal Plus ergibt Minus.} \\ - \cdot - & \Rightarrow & + && \text{Minus mal Minus ergibt Plus.} \\ \end{array} $

    Diese kann man zu folgenden Regeln zusammenfassen:

    • Die Multiplikation zweier Zahlen mit dem gleichen Vorzeichen liefert ein positives Ergebnis.
    • Die Multiplikation zweier Zahlen mit unterschiedlichem Vorzeichen liefert ein negatives Ergebnis.
    • Diese Regeln gelten sowohl für die Multiplikation als auch für die Division.
  • Ermittle die gesuchte Größe mittels Multiplikation.

    Tipps

    Unsere Ausgaben führen zu einer Abnahme unseres Vermögens. Daher haben Ausgaben negative Vorzeichen.

    Wenn wir etwas über einen Zeitpunkt in der Vergangenheit errechnen möchten, hat die Zeitangabe ebenfalls ein negatives Vorzeichen.

    Die Multiplikation zweier Zahlen mit dem gleichen Vorzeichen liefert ein positives Ergebnis.

    Lösung

    Wir halten Folgendes fest:

    • Lisa hat genau heute kein Geld mehr.
    • Lisa hat in der letzten Woche jeden Tag $10\ €$ ausgegeben.
    Gesucht ist der Betrag, den Lisa vor drei Tagen noch hatte. Dieser soll mittels einer Multiplikation bestimmt werden. Da es sich hierbei um Ausgaben handelt, ist einer der Faktoren in unserer Rechnung die $(-10)$. Zudem möchten wir in die Vergangenheit zurückrechnen. Auch dies erfolgt mit einem negativen Faktor, nämlich der $(-3)$. Somit erhalten wir:

    $(-3)\cdot (-10)$.

    Wir wissen, dass die Multiplikation zweier Zahlen mit dem gleichen Vorzeichen ein positives Ergebnis liefert. Also folgt:

    $(-3)\cdot (-10)=30$.

  • Bestimme die gesuchten Produkte.

    Tipps

    Multipliziere die Einträge in der Tabellenspalte mit den Einträgen in der Tabellenzeile. Schau dir folgendes Beispiel an:

    $ \begin{array}{l|l|l} \text{multipliziere} & -4 & 2 \\ \hline \\ 2 & -8 & 4 \\ \hline \\ -1 & 4 &-2 \end{array} $

    Beachte die unten aufgeführten Regeln bei der Multiplikation.

    $ \begin{array}{lllll} + \cdot + & \Rightarrow & + && \text{Plus mal Plus ergibt Plus.} \\ + \cdot - & \Rightarrow & - && \text{Plus mal Minus ergibt Minus.} \\ - \cdot + & \Rightarrow & - && \text{Minus mal Plus ergibt Minus.} \\ - \cdot - & \Rightarrow & + && \text{Minus mal Minus ergibt Plus.} \\ \end{array} $

    Lösung

    Wir multiplizieren die Einträge in der Tabellenspalte mit den Einträgen in der Tabellenzeile. Dabei beachten wir, dass folgende Regeln für die Vorzeichen gelten:

    • Die Multiplikation zweier Zahlen mit dem gleichen Vorzeichen liefert ein positives Ergebnis.
    • Die Multiplikation zweier Zahlen mit unterschiedlichem Vorzeichen liefert ein negatives Ergebnis.
    Damit erhalten wir folgende Einträge in der Tabelle:

    $ \begin{array}{l|l|l} \text{multipliziere} & -3 & 7 \\ \hline \\ -4 & 12 & -28 \\ \hline \\ 6 & -18 &42 \end{array} $

  • Gib die Rechenaufgabe zu der jeweiligen Vorzeichenregel an.

    Tipps

    Achte auf die Vorzeichen der Zahlen. Falls kein Vorzeichen vorhanden ist, handelt es sich um eine positive Zahl.

    Lösung

    Folgende Regeln gelten bei der Multiplikation zweier Zahlen:

    • Die Multiplikation zweier Zahlen mit dem gleichen Vorzeichen liefert ein positives Ergebnis.
    • Die Multiplikation zweier Zahlen mit unterschiedlichem Vorzeichen liefert ein negatives Ergebnis.
    Aus diesen beiden Regeln lassen sich vier verschiedene Vorzeichen-Kombinationen bei der Multiplikation ableiten. Nun möchten wir die vorgegebenen Aufgaben diesen vier Vorzeichenregeln zuordnen. Es folgt:

    $ \begin{array}{llllllllllr} + \cdot + = + && \Rightarrow && (+2)\cdot (+2)=+4 && \Rightarrow && 2\cdot 2&=&4 \\ + \cdot - = - && \Rightarrow && (+2)\cdot (-2) = -4 && \Rightarrow && 2\cdot (-2) &=& -4\\ - \cdot + = - && \Rightarrow && (-2)\cdot (+2) = -4 && \Rightarrow && (-2)\cdot 2 &=& -4\\ - \cdot - = + && \Rightarrow && (-2)\cdot (-2) = +4 && \Rightarrow && (-2)\cdot (-2) &=& 4 \end{array} $

  • Ermittle die fehlende Zahl.

    Tipps

    Bei einer Multiplikation mit mehr als drei Faktoren gilt Folgendes:

    • Wenn die Anzahl der negativen Faktoren gerade ist, so ist das Ergebnis positiv.
    • Wenn die Anzahl der negativen Faktoren ungerade ist, so ist das Ergebnis negativ.

    Schau dir folgende Beispiele an:

    1. $(-3)\cdot 6\cdot (-1)=18$;
    2. $3\cdot 6\cdot (-1)=-18$.
    In der ersten Aufgabe haben wir $2$ negative Faktoren und somit eine gerade Anzahl an negativen Faktoren. Also ist das Ergebnis positiv.

    In der zweiten Aufgabe liegt nur ein negativer Faktor vor. Da wir eine ungerade Anzahl an negativen Faktoren haben, resultiert ein negatives Ergebnis.

    Lösung

    In dieser Aufgabe tauchen nun Rechnungen mit mehr als zwei Faktoren auf. In so einem Fall ist Folgendes zu beachten:

    • Wenn die Anzahl der negativen Faktoren gerade ist, so ist das Ergebnis positiv.
    • Wenn die Anzahl der negativen Faktoren ungerade ist, so ist das Ergebnis negativ.
    Ausgehend von dieser Regel, werden wir nun die Aufgaben lösen.

    Aufgabe 1

    $(-2)\cdot$ ___ $=6$

    Es ist ein negativer Faktor und ein positives Ergebnis gegeben. Damit das Ergebnis positiv sein kann, muss der zweite Faktor ebenfalls negativ sein, denn „Minus mal Minus ergibt Plus“. Somit lautet die Lösung:

    $(-2)\cdot (-3)=6$.

    Aufgabe 2

    $4\cdot 5\cdot (-1)=$ ___

    Es sind ein negativer und zwei positive Faktoren gegeben. Somit haben wir eine ungerade Anzahl an negativen Faktoren und erhalten folgende Lösung:

    $4\cdot 5\cdot (-1)=-20$.

    Aufgabe 3

    $5\cdot$ ___ $\cdot (-1)=-30$

    Es ist ein negativer und ein positiver Faktor gegeben. Das Ergebnis ist negativ. Da wir bereits eine ungerade Anzahl an negativen Faktoren haben, muss der gesuchte Wert positiv sein, damit ein negatives Ergebnis möglich ist. Wir erhalten folgende Lösung:

    $5\cdot 6\cdot (-1)=-30$.

    Aufgabe 4

    ___ $\cdot (-2)\cdot (-2)=12$

    Es sind zwei negative Faktoren gegeben. Das Ergebnis ist positiv. Da wir bereits eine gerade Anzahl an negativen Faktoren haben, muss der gesuchte Wert positiv sein, damit ein positives Ergebnis möglich ist. Wir erhalten folgende Lösung:

    $3\cdot (-2)\cdot (-2)=12$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.366

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.911

Lernvideos

37.098

Übungen

34.316

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden