Determinante berechnen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Determinante berechnen
Determinanten und Parallelogrammflächen
Determinanten spielen in vielen Bereichen der Physik, Mathematik oder Ingenieurwissenschaften eine wichtige Rolle. Aber was bedeutet Determinante eigentlich in Mathe? Und wie hängt sie mit der Fläche von Parallelogrammen zusammen?
Determinante – Beispiel
Um zu verstehen, wie wir eine Determinante berechnen können, betrachten wir die folgende Zeichnung:
Wir wollen den Flächeninhalt $A$ des Parallelogramms $ABCD$ bestimmen. Es wird durch die zwei Vektoren $\vec{a} = \overrightarrow{AB} = \overrightarrow{DC}$ und $\vec{b} = \overrightarrow{AD} = \overrightarrow{BC}$ aufgespannt. Die beiden Vektoren können wir in der Komponentenschreibweise auch folgendermaßen aufschreiben:
$\vec{a} = \binom{a_x}{a_y} $
$\vec{b} = \binom{b_x}{b_y}$
Wenn wir ein Rechteck mit den Eckpunkten $A$ und $C$ und $E$ und $F$ um das Parallelogramm zeichnen, können wir die Seiten des Rechtecks jeweils als Summe der Komponenten der Vektoren darstellen. Die Seite $\overline{AF}$ setzt sich beispielsweise aus den Komponenten $b_y$ und $a_y$ zusammen.
Mit den eingezeichneten Vektorkomponenten ergeben sich sechs weitere, kleine Flächen, die das Parallelogramm umgeben. Um die Fläche des Parallelogramms zu bestimmen, können wir daher die Fläche des Rechtecks $A_{\square}$ berechnen und diese sechs Flächen abziehen.
Die Fläche des Rechtecks berechnen wir folgendermaßen:
$(a_y + b_y) \cdot (a_x + b_x) = A_{\square}$
Um die Fläche des Parallelogramms zu erhalten, müssen wir jetzt die sechs kleineren Flächen abziehen. Zunächst betrachten wir das blau schraffierte rechtwinklige Dreieck. Seine Katheten haben die Längen $b_y$ und $b_x$. Das Dreieck hat damit die Fläche $A_{\triangle ,blau} = \frac{1}{2} \cdot b_y \cdot b_x$. Das gelb schraffierte Dreieck hat Katheten der Länge $a_y$ und $a_x$ und die
$A = A_{\square} - 2 \cdot A_{\triangle ,blau} - 2 \cdot A_{\triangle ,gelb} - 2 \cdot A_{\square, rot}$
Das Einsetzen ergibt:
$A = (a_y + b_y) \cdot (a_x + b_x) - b_y \cdot b_x - a_y \cdot a_x - 2 \cdot a_y \cdot b_x$
Wir multiplizieren den ersten Term aus:
$A = a_y \cdot a_x + a_y \cdot b_x + b_y \cdot a_x + b_y \cdot b_x - b_y \cdot b_x - a_y \cdot a_x - 2 \cdot a_y \cdot b_x$
Weil mehrere Terme sowohl mit positivem als auch negativem Vorzeichen auftreten, addieren sie sich zu null und fallen weg. Wenn wir den Rest zusammenfassen, erhalten wir schließlich:
$A = a_x \cdot b_y - a_y \cdot b_x$
Das ist eine zweireihige Determinante. Man kann die Determinante auch so aufschreiben:
$ \begin{vmatrix} a_x & b_x \\ a_y & b_y \end{vmatrix} = a_x \cdot b_y - a_y \cdot b_x$
$ \binom{a_x ~ b_x}{a_y ~ b_y} $ bezeichnet man auch als die Matrix, in der die Vektoren $\vec{a}$ und $\vec{b}$ die Spalten bilden. Die Determinante entspricht aber nur dann dem Flächeninhalt des von den Vektoren aufgespannten Parallelogramms, wenn zwei Bedingungen erfüllt sind:
- Die beiden Vektoren müssen denselben Fußpunkt haben.
- Der Vektor in der ersten Spalte der Matrix muss – in der Zeichnung gegen den Uhrzeigersinn zu dem Vektor der zweiten Spalte gedreht – die Fläche des Parallelogramms überstreichen.
Wenn diese Bedingungen nicht erfüllt sind, kann man die Determinante zwar trotzdem berechnen, sie entspricht dann aber nicht dem Flächeninhalt des Parallelogramms.
Determinanten und Parallelogrammflächen - Zusammenfassung
In diesem Video lernst du, wie die Determinante und der Flächeninhalt eines Parallelogramms zusammenhängen. Die Formel für die zweireihige Determinante wird einfach hergeleitet. Du solltest schon wissen, was Vektoren sind, bevor du dieses Video schaust.
Determinante berechnen Übung
-
Beschreibe, was man unter einer Determinante versteht.
TippsFür die Determinante der Matrix $A$ gibt es verschiedene Schreibweisen:
$\det (A)$
beziehungsweise:
$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
Wir können die Determinante einer $2{\times}2$-Matrix mit der folgenden Formel berechnen:
$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - c \cdot b$
Zwei der Aussagen sind falsch.
Lösung- Eine Determinante ist eine Zahl, die einer quadratischen Matrix zugeordnet wird.
Eine quadratische Matrix ist eine Matrix, die genauso viele Spalten wie Zeilen hat, also beispielsweise eine $2{\times}2$- oder eine $3{\times}3$-Matrix.
Für die Determinante der Matrix $A$ gibt es verschiedene Schreibweisen:
$\det (A)$
beziehungsweise:
$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
oder auch:
$|A|$
beziehungsweise:
$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$
Dabei handelt es sich jedoch nicht um die Betragsstriche.
Die Schreibweise $\det |A|$ ist hingegen falsch, somit auch diese Aussage:
- Für die Determinante der Matrix $A$ schreiben wir kurz: $\det |A|$.
Wir können die Determinante einer $2{\times}2$-Matrix mit der folgenden Formel berechnen:
$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - c \cdot b$
- Zur Berechnung der Determinanten einer $2{\times}2$-Matrix multiplizieren wir entlang der Hauptdiagonalen und ziehen das Produkt der Nebendiagonalen ab.
Wir können die Determinante einer $3{\times}3$-Matrix mithilfe der Regel von Sarrus berechnen:
$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - gec - hfa - ibd$
Somit ist folgende Aussage falsch:
- Die Regel von Sarrus bezieht sich auf $4{\times}4$-Matrizen.
-
Bestimme die Determinanten der $2{\times}2$-Matrizen.
TippsAchte auf negative Vorzeichen.
LösungEine Determinante ist eine Zahl, die einer quadratischen Matrix zugeordnet ist.
Für eine $2{\times}2$-Matrix gilt zur Bestimmung der Determinante diese Rechenvorschrift:
$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - c \cdot b$
Wir berechnen nun die Determinaten der gegebenen Matrizen:
$\begin{vmatrix} 2 & 6 \\ 5 & 7 \end{vmatrix} = 2 \cdot 7 - 5 \cdot 6 = 14 - 30 = -16$
$\begin{vmatrix} -3 & -2 \\ 1 & -4 \end{vmatrix} = -3 \cdot (-4) - 1 \cdot (-2) = 12 + 2 = 14$
$\begin{vmatrix} 2 & 2 \\ 2 & -2 \end{vmatrix} = 2 \cdot (-2) - 2 \cdot 2 = -4-4=-8$
$\begin{vmatrix} 5 & 2 \\ -1 & 8 \end{vmatrix} = 5 \cdot 8 - (-1) \cdot 2 = 40 + 2 = 42$
-
Berechne die Determinanten der $3{\times}3$-Matrizen.
Tipps$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - gec - hfa - ibd$
Achte auf negative Vorzeichen.
LösungUm die Determinante einer $3{\times}3$-Matrix zu berechnen, müssen wir eine ganz konkrete Zahl ermitteln. Wir können die Determinante einer $3{\times}3$-Matrix mithilfe der Regel von Sarrus berechnen:
$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - gec - hfa - ibd$
Zur Berechnung der Determinante addieren wir die Produkte der Hauptdiagonalen und ziehen die Produkte der Nebendiagonalen ab. Die Haupt- und Nebendiagonalen können wir dabei gut erkennen, wenn wir die ersten beiden Spalten der Matrix noch einmal rechts daneben ergänzen:
$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \begin{matrix} a \\ d \\ g \end{matrix} \quad \begin{matrix} b \\ e \\ h \end{matrix}$
Wir kennen nun die Vorgehensweise und können so die Determinanten der gegebenen Matrizen berechnen:
Matrix 1:
$\begin{array}{ll} \begin{vmatrix} 9 & -2 & 1 \\ 0 & 4 & -5 \\ 5 & 2 & 1 \end{vmatrix} &= 9 \cdot 4 \cdot 1 + (-2) \cdot (-5) \cdot 5 + 1 \cdot 0 \cdot 2 - 5 \cdot 4 \cdot 1 - 2 \cdot (-5) \cdot 9 - 1 \cdot 0 \cdot (-2) \\ &= 36 + 50 + 0 - 20 - (-90) - 0 \\ &= 156 \end{array}$
Matrix 2:
$\begin{array}{ll} \begin{vmatrix} 3 & -5 & 1 \\ 8 & 0 & -1 \\ 10 & 2 & 1 \end{vmatrix} &= 3 \cdot 0 \cdot 1 + (-5) \cdot (-1) \cdot 10 + 1 \cdot 8 \cdot 2 - 10 \cdot 0 \cdot 1 - 2 \cdot (-1) \cdot 3 - 1 \cdot 8 \cdot (-5) \\ &= 0 + 50 + 16 - 0 - (-6) - (-40) \\ &= 112 \end{array}$
Matrix 3:
$\begin{array}{ll} \begin{vmatrix} 0 & -2 & 0 \\ 9 & 4 & -6 \\ 2 & -1 & 3 \end{vmatrix} &= 0 \cdot 4 \cdot 3 + (-2) \cdot (-6) \cdot 2 + 0 \cdot 9 \cdot (-1) - 2 \cdot 4 \cdot 0 - (-1) \cdot (-6) \cdot 0 - 3 \cdot 9 \cdot (-2) \\ &= 0 + 24 + 0 - 0 - (-54) \\ &= 78 \end{array}$
-
Ordne die Matrizen nach der Größe ihrer Determinanten.
TippsZur Berechnung der Determinante addieren wir die Produkte der Hauptdiagonalen und ziehen die Produkte der Nebendiagonalen ab. Die Haupt- und Nebendiagonalen können wir dabei gut erkennen, wenn wir die ersten beiden Spalten der Matrix noch einmal rechts daneben ergänzen:
$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \begin{matrix} a \\ d \\ g \end{matrix} \quad \begin{matrix} b \\ e \\ h \end{matrix}$
Berechne zuerst die Determinanten aller vier Matrizen. Arbeite schriftlich. Anschließend kannst du sortieren.
LösungUm die Determinante einer $3{\times}3$-Matrix zu berechnen, verwenden wir die Regel von Sarrus:
$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - gec - hfa - ibd$
Wir berechnen jetzt die Determinanten der gegebenen Matrizen und sortieren anschließend:
$\begin{array}{ll} \begin{vmatrix} 0 & 1 & 1 \\ 0 & 2& -1 \\ 2 & 0 & 1 \end{vmatrix} &= 0\cdot 2 \cdot 1 + 1 \cdot (-1) \cdot 2 + 1 \cdot 0 \cdot 0 - 2 \cdot 2 \cdot 1 - 0 \cdot (-1) \cdot 0 - 1 \cdot 0\cdot 1 \\ &= 0 + (-2) + 0 - 4 - 0 - 0 \\ &= -6 \end{array}$
$\begin{array}{ll} \begin{vmatrix} 2 & 3 & 2 \\ 0 & -1& -1 \\ 1 & 0 & 2 \end{vmatrix} &= 2 \cdot (-1) \cdot 2 + 3 \cdot (-1) \cdot 1 + 2 \cdot 0 \cdot 0 - 1 \cdot (-1) \cdot 2 - 0 \cdot (-1) \cdot 2 - 2 \cdot 0\cdot 3 \\ &= -4 + (-3) + 0 - (-2) - 0 - 0 \\ &= -5 \end{array}$
$\begin{array}{ll} \begin{vmatrix} -1& 3 & -2 \\ 0 & -1& 2 \\ 3 & 1 & 2 \end{vmatrix} &=({-}1) \cdot (-1) \cdot 2 + 3 \cdot 2 \cdot 3 + (-2) \cdot 0 \cdot 1 - 3 \cdot (-1) \cdot (-2) - 1 \cdot 2 \cdot (-1) - 2 \cdot 0\cdot 3 \\ &= 2 + 18 + 0 - 6 - (-2) - 0 \\ &= 16 \end{array}$
$\begin{array}{ll} \begin{vmatrix} -1 & 1 & 1 \\ 0 & 2& -1 \\ 2 & 0 & 2 \end{vmatrix} &= ({-}1) \cdot 2 \cdot 2 + 1 \cdot (-1) \cdot 2 + 1 \cdot 0 \cdot 0 - 2 \cdot 2 \cdot 1 - 0 \cdot (-1) \cdot (-1) - 2 \cdot 0\cdot 1 \\ &= -4 + (-2) + 0 - 4 - 0 - 0 \\ &= -10 \end{array}$
Die richtige Reihenfolge lautet also:
$\begin{vmatrix} -1 & 1 & 1 \\ 0 & 2& -1 \\ 2 & 0 & 2 \end{vmatrix} \quad < \quad \begin{vmatrix} 0 & 1 & 1 \\ 0 & 2& -1 \\ 2 & 0 & 1 \end{vmatrix} \quad < \quad \begin{vmatrix} 2 & 3 & 2 \\ 0 & -1& -1 \\ 1 & 0 & 2 \end{vmatrix} \quad < \quad \begin{vmatrix} -1& 3 & -2 \\ 0 & -1& 2 \\ 3 & 1 & 2 \end{vmatrix}$
-
Gib an, von welchen mathematischen Objekten sich eine Determinante berechnen lässt.
TippsEine Determinante ist eine Zahl, die einer quadratischen Matrix zugeordnet wird.
Du musst zwei Objekte auswählen.
LösungEine Determinante ist eine Zahl, die einer quadratischen Matrix zugeordnet wird.
Eine quadratische Matrix ist eine Matrix, die genauso viele Spalten wie Zeilen hat, also beispielsweise eine $2{\times}2$- oder eine $3{\times}3$-Matrix.Wir betrachten die gegebenen Objekte:
- $\begin{pmatrix} 2 & 3 & 9 \\ 0 & -1 & -10 \\ 10 & 0 & 1 \end{pmatrix}$
$\begin{array}{ll} \begin{vmatrix} 2 & 3 & 9 \\ 0 & -1 & -10 \\ -10 & 0 & 1 \end{vmatrix} &= 2 \cdot (-1) \cdot 1 + 3 \cdot (-10) \cdot (-10) + 9 \cdot 0 \cdot 0 - (-10) \cdot (-1) \cdot 9 - 0 \cdot (-10) \cdot 2 - 1 \cdot 0 \cdot 3 \\ & = -2 + 300 + 0 - 90 - 0 - 0 \\ &= 208 \end{array}$
- $\begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix}$
- $\begin{pmatrix}-1 & -1 & 3 \\ 0 & 4 & 2 \end{pmatrix}$
- $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 1 \cdot 4 - 3 \cdot 2 = 4 - 6 = -2$
- $\begin{pmatrix} 2 & -4 \\ 3 & -10 \\ 0 & 9 \end{pmatrix}$
- $\begin{pmatrix} 2 \\ -2 \end{pmatrix}$
-
Vervollständige die Matrix mit der Zahl $a$ so, dass die Determinante genau $0$ ergibt.
TippsBestimme zunächst die Determinante mithilfe der Regel von Sarrus. Nimm dabei die Variable $a$ wie eine Zahl mit.
Du erhälst:
$2 \cdot a \cdot 10 + 5 \cdot (-10) \cdot 2 + (-2) \cdot 0 \cdot 2 - 2 \cdot a \cdot (-2) - 2 \cdot (-10) \cdot 2 - 10 \cdot 0 \cdot 5$
Vereinfache den Term und setze ihn gleich $0$. Löse ihn dann nach $a$ auf.
LösungWir betrachten die gegebene Matrix:
$\begin{pmatrix} 2 & 5 & -2 \\ 0 & a & -10 \\ 2 & 2 & 10 \end{pmatrix}$
Da es sich um eine $3{\times}3$-Matrix handelt, können wir ihre Determinante mithilfe der Regel von Sarrus berechnen:
$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - gec - hfa - ibd$
Wir berechnen nun zunächst die Determinante unter Verwendung der obigen Formel:
$\begin{vmatrix} 2 & 5 & -2 \\ 0 & a & -10 \\ 2 & 2 & 10 \end{vmatrix} = 2 \cdot a \cdot 10 + 5 \cdot (-10) \cdot 2 + (-2) \cdot 0 \cdot 2 - 2 \cdot a \cdot (-2) - 2 \cdot (-10) \cdot 2 - 10 \cdot 0 \cdot 5$
Diesen Term vereinfachen wir zu:
$20a + (-100) + 0 - (-4a) - (-40) - 0 = 20a - 100 + 4a +40 = 24a -60$
Jetzt setzen wir den Term gleich $0$ und lösen nach $a$ auf:
$\begin{array}{lll} 24a - 60 &= 0 &|+60 \\ 24a &= 60 &|:24 \\ a &= 2{,}5 & \\ \end{array}$
Wenn wir für $a=2{,}5$ einsetzen, ist die Determinante der Matrix genau $0$. Die Matrix lautet also:
$\begin{pmatrix} 2 & 5 & -2 \\ 0 & 2{,}5 & -10 \\ 2 & 2 & 10 \end{pmatrix}$
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Rechteck
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Was ist eine Viertelstunde
- Prisma
- Mitternachtsformel
- Grundrechenarten Begriffe
- Dreiecksarten
- Quader
- Satz des Pythagoras
- Dreieck Grundschule
- Kreis
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen in Worten schreiben
- Meter
- Orthogonalität
- Schriftlich multiplizieren
- Brüche multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen berechnen
- Brüche addieren
- Kongruenz
- Exponentialfunktion
- Scheitelpunktform
- Logarithmus
- Erwartungswert
- Skalarprodukt
- Primfaktorzerlegung
- Quadratische Ergänzung
- Zinseszins
- Geradengleichung aus zwei Punkten bestimmen
- Sinusfunktion
- Natürliche Zahlen
- Brüche dividieren