30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Was ist der Betrag einer Zahl?

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

sofatutor kostenlos testen
Bewertung

Ø 4.3 / 45 Bewertungen

Die Autor*innen
Avatar
Team Digital
Was ist der Betrag einer Zahl?
lernst du in der 5. Klasse - 6. Klasse

Grundlagen zum Thema Was ist der Betrag einer Zahl?

Inhalt

Was ist der Betrag einer Zahl?

Die Höhen im Gebirge und die Tiefe des Meers kannst du in Metern messen. Beide Maßangaben beziehen sich auf die Höhe des Meeresspiegels. Als Höhe eines Bergs gibt man an, wie hoch er über dem Meeresspiegel liegt. Die Tauchtiefe eines U-Boots ist seine Tiefe unter dem Meeresspiegel. Der höchste Berg der Erde ist der Mount Everest mit $8.800~\pu{m}$ und die tiefste Stelle im Meer der Marianengraben mit einer Tiefe von rund $-11.000~\pu{m}$. Welches von beiden ist weiter vom Meeresspiegel entfernt? Um diese Frage zu lösen, verwenden wir den Betrag der beiden Zahlen.

Betrag einer Zahl – Definition

In der Mathematik tragen wir die Zahlen auf der Zahlengerade ab. Positive Zahlen liegen rechts der Null, negative Zahlen links der Null. Je weiter rechts eine Zahl steht, desto größer ist sie. Daher sind positive Zahlen stets größer als negative Zahlen. Bei der Angabe einer Höhe oder Tiefe können wir uns die Zahlengerade vertikal statt horizontal vorstellen. Die Null liegt genau auf der Höhe des Meeresspiegels. Je höher eine Zahl steht, desto größer ist sie. Positive Zahlen bezeichnen die Höhen über dem Meeresspiegel, negative Zahlen die Tiefen unter dem Meeresspiegel.

Der Betrag einer Zahl ist ihr Abstand zur Null auf der Zahlengerade. Der Abstand zwischen zwei Punkten ist nie negativ. Daher ist auch der Abstand von $-11.000$ zur Null eine positive Zahl, nämlich $11.000$. Denn eine Tiefe von $-11.000~\pu{m}$ liegt $11.000~\pu{m}$ unter dem Meeresspiegel. Wir schreiben das so auf:

$|-11.000| = 11.000$

Eine Höhe von $8.800~\pu{m}$ ist $8.800~\pu{m}$ vom Meeresspiegel entfernt. Daher ist:

$|8.800| = 8.800$

Beträge vergleichen

Die Zahl $-11.000$ ist kleiner als die Zahl $8.800$. Denn $-11.000$ ist eine negative Zahl und liegt auf der Zahlengeraden links der Null, $8.800$ ist eine positive Zahl und liegt rechts der Null. Wir schreiben die Relation der Zahlen so auf:

$-11.000 < 8.800$

Welcher Wert ist weiter vom Meeresspiegel entfernt: die Tiefe $-11.000~\pu{m}$ oder die Höhe $8.800~\pu{m}$? Der Abstand zum Meeresspiegel ist der Betrag der Zahl und für die Beträge gilt:

$|8.800| = 8.800 < 11.000 = |-11.000|$

Also ist der Boden des Marianengrabens weiter vom Meeresspiegel entfernt als der Gipfel des Mount Everest!

Betrag Höhe und Tiefe

Wie rechnet man den Betrag einer Zahl aus?

Der Betrag einer positiven Zahl $x$ ist identisch mit dieser Zahl. Denn der Wert einer positiven Zahl ist dasselbe wie ihr Abstand zur Null auf dem Zahlenstrahl.

  • $|x|=x$ gilt für $x>0$

Der Betrag einer negativen Zahl $-x$ entspricht ihrer Gegenzahl $x$. Denn der Abstand einer negativen Zahl $-x$ zur Null auf dem Zahlenstrahl entspricht der Zahl $x$, die man zu $-x$ addieren muss, um zur Null zu gelangen.

  • $|-x| = x$ gilt für $x>0$

Der Betrag von $0$ ist $0$. Die Zahl $0$ hat zur Null auf dem Zahlenstrahl keinen Abstand.

  • $|x|=0$ gilt für $x=0$

Betrag einer Zahl – Beispiele

Der Betrag einer positiven Zahl ist positiv: $|3|=3$. Der Betrag einer negativen Zahl ist ebenfalls positiv: $|-5|=5$. Setzt du vor den Betrag der positiven Zahl ein Minuszeichen, so erhältst du eine negative Zahl: $-|3| = -3$, nämlich die Gegenzahl des Betrags. Setzt du vor den Betrag einer negativen Zahl ein Minuszeichen, so erhältst du ebenfalls eine negative Zahl: $-|5|=-5$.

Steht zwischen den Betragsstrichen ein zusammengesetzter Term, so musst du den Term zuerst zusammenfassen, bevor du den Betrag berechnest:

$|3+(-5)| = |-2| =2$

Dieses Video

In diesem Video wird dir verständlich erklärt, was der Betrag einer Zahl ist und wie du ihn berechnest. Du erfährst auch, wie du die Beträge positiver und negativer Zahlen vergleichst. Zu dem Video gibt es interaktive Übungen, in denen du dein neues Wissen gleich anwenden kannst.

Transkript Was ist der Betrag einer Zahl?

Lara und Philipp machen Ferien in den Niederlanden. Das Gelände hier ist total flach und liegt kaum über dem Meeresspiegel.Der Urlaub ist so wunderbar, dass die beiden schon darüber nachdenken, wohin sie als nächstes reisen möchten.Lara will unbedingt bergsteigen, aber Philipp will lieber tauchen gehen. Die beiden sind sich vielleicht uneins, was sie tun wollen, bei einer Sache sind sie sich aber einig: Sie wollen so weit weg vom Meeresspiegel wie möglich. Wo auch immer das sein mag. Lara schlägt den Mount Everest vor, mit gut 8.800 Metern über dem Meeresspiegel der höchste Punkt auf Erden. Philipp denkt eher an eine Reise zum Marianengraben. Das ist nämlich der tiefste Punkt auf der Erde, er liegt etwa -11.000 Meter tief, also 11.000 Meter unter dem Meeresspiegel. Helfen wir den beiden dabei, das richtige Reiseziel zu finden. Wie wir wissen, sind negative Zahlen kleiner als positive Zahlen. -11.000 Meter, die Tiefe des Marianengrabens, ist also kleiner als die Höhe des Mount Everests mit über 8.800 Metern. Ist der Mount Everest also das Reiseziel der Wahl? Nicht unbedingt. Um die Fragestellung zu lösen, brauchen wir den Betrag von der Tiefe und von der Höhe der beiden Orte. Der Betrag einer Zahl ist der Abstand, den die Zahl zur 0 hat, ganz egal ob sie positiv oder negativ ist. Eine Tiefe von -11.000 Metern liegt 11.000 Meter unter dem Meeresspiegel. Der Betrag von -11.000 ist also 11.000. Eine Höhe von 8.800 Metern ist 8.800 Meter vom Meeresspiegel entfernt. Der Betrag von 8.800 ist also 8.800. Eine Betrag ist immer positiv ohne Ausnahme. Der Betrag von -11.000 ist größer als der Betrag von 8.800, weil 11.000 größer als 8.800 ist. Die tiefste Stelle im Marianengraben ist also weiter vom Meeresspiegel entfernt als die Spitze des Mount Everests. Wir haben einen Gewinner! Bevor Lara und Philipp Taucherbrille und Sonnencreme einpacken, schauen wir uns das noch mal an. Der Betrag einer positiven Zahl ist identisch mit dieser Zahl. Der Betrag einer negativen Zahl entspricht ihrer Gegenzahl und ist damit immer positiv. Der Betrag von 0 ist 0. Schauen wir uns ein paar Beispiele an. Was bekommt man, wenn man vor den Betrag einer positiven Zahl ein Minuszeichen setzt? Eine negative Zahl. Und was bekommt man, wenn man vor den Betrag einer negativen Zahl ein Minuszeichen setzt? Ebenfalls eine negative Zahl. Was machst du mit einem Term, der zwischen den Betragsstrichen steht? Du musst ihn erst vereinfachen und dann den Betrag bestimmen. Achte bei komplexen Aufgaben darauf, dass du die Punkt-vor-Strich Regel beachtest. Als Taucher im Marianengraben hat Philipp so viel Spaß wie noch nie in seinem Leben. Aber was ist mit Lara? Ach was? Hat sie doch noch einen Berg zum besteigen gefunden? Oh oh, oder vielleicht doch nicht?

10 Kommentare

10 Kommentare
  1. War cool vor allem das Ende mit dem Monster und hat super geholfen

    Von Alidaniela928, vor etwa einem Jahr
  2. Könnt ihr ein Thema über rationale Zahlen von Brüchen machen🙏?

    Von Jungkook, vor etwa einem Jahr
  3. War nicht wirklich viel Inhalt sondern eher ein kleiner Film

    Von Veronica M., vor etwa einem Jahr
  4. Naja geht so

    Von Nautistore, vor mehr als einem Jahr
  5. Super erklärt. Biite korrigiert bei Gelegenheit die 1. Lösungslücke. Sie erkennt das > nicht an.

    Von Carolinedaul Ernst, vor fast 2 Jahren
Mehr Kommentare

Was ist der Betrag einer Zahl? Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Was ist der Betrag einer Zahl? kannst du es wiederholen und üben.
  • Bestimme mithilfe von Beträgen das beste Reiseziel.

    Tipps

    Für den Vergleich der Höhen betrachten wir die gegebenen Zahlen aus der Aufgabenstellung.

    Für den Vergleich der Abstände zum Meeresspiegel betrachten wir die Beträge der gegebenen Zahlen aus der Aufgabenstellung.

    So berechnest du den Betrag einer Zahl:

    • Ist die Zahl positiv oder null, ändert der Betrag nichts an der Zahl. Es gilt $\vert x\vert=x$.
    • Ist die Zahl negativ, ändert der Betrag nur das Vorzeichen der Zahl. Es gilt $\vert -x\vert=x$.
    Lösung

    Natürlich könnten wir die Frage auch aus dem Bauchgefühl beantworten. Hier möchten wir aber herausfinden, welche Rechnung im Bauchgefühl eigentlich verborgen ist.
    Vergleiche von Größen treffen wir mit den Bezeichnungen „größer als“, in Zeichen „$\gt$,“ oder „kleiner als“, in Zeichen „$\lt$“, aber auch mit „größer oder gleich“, in Zeichen „$\geq$,“ oder „kleiner oder gleich“, in Zeichen „$\leq$“.

    Höhen / Zahlen

    In der ersten Rechnung vergleichen wir die beiden Höhen. Die Höhe des Mount Everests ist mit $8800$ Metern und die Höhe des Marianengrabens mit $-11000$ Metern gegeben.

    Der mathematische Vergleich der Zahlen liefert $-11000\lt 8800$. Doch auch wenn die Zahl $-11000$ kleiner als die Zahl $8800$ ist, vermuten wir: Die Zahl $8800$ liegt nicht weiter von der Null entfernt als die Zahl $-11000$. Genau das können wir mit Beträgen auch berechnen.

    Abstand zum Meeresspiegel / Betrag

    Der Betrag einer Zahl stellt ihren Abstand zur Null dar. In dieser Textaufgabe steht der Betrag der Höhe eines Ortes für dessen Abstand zum Meeresspiegel. Um die Beträge miteinander zu vergleichen, ermitteln wir ihre Zahlenwert.:

    • Abstand des Mount Everests zum Meeresspiegel. Es gilt $\vert 8800 \vert=8800$.
    • Abstand des Marianengrabens zum Meeresspiegel. Es gilt $\vert -11000 \vert=11000$.
    Der abschließende Vergleichen liefert:

    $\vert 8800 \vert=8800 \lt 11000 =\vert -11000 \vert$ bzw. $\vert 8800 \vert \lt \vert -11000 \vert$.

    Der Marianengraben liegt also weiter vom Meeresspiegel entfernt und ist somit das perfekte Reiseziel für Philip und Lara.

  • Ergänze die Grundregeln für den Umgang mit Beträgen.

    Tipps

    Ein Beispiel zu Beträgen und Summen:

    Berechnest du die Summe der einzelnen Beträge von $40$ und ${-50}$, erhältst du

    $\vert {40}\vert+\vert {-50}\vert=40+50=90$.

    Berechnest du den Betrag der Summe von $40$ und ${-50}$, erhältst du jedoch

    $\vert 40+({-50})\vert = \vert {-10} \vert = 10$.

    Worin unterscheiden sich die beiden Rechnungen?

    Lösung

    Um den Betrag einer Zahl zu berechnen, musst du auf Folgendes achten.

    Positive Beträge

    • Ist eine Zahl $x$ positiv oder null, ändert der Betrag nichts an der Zahl. Es gilt $\vert x\vert=x$.
    • Ist eine Zahl $-x$ negativ, ändert der Betrag nur das Vorzeichen der Zahl. Es gilt $\vert -x\vert=x$.
    Der Betrag einer Zahl (außer null) ist immer positiv und der Betrag von null ist null.

    Negative Beträge

    Steht vor dem Betrag ein Minus, ist das Ergebnis immer negativ, z.B. ${-\vert {-9}\vert}={-(+9)}={-9}$. Auch hier gilt wieder, dass der Betrag von null eine Ausnahme bildet.

    Beträge von Rechenausdrücken

    Um Beträge von Rechenausdrücken zu berechnen gilt: Erst den Ausdruck (z.B. die Summe) berechnen und dann erst den Betrag ermitteln.

  • Zeige, wie unterschiedlich wir eine Zahl mittels Beträgen darstellen können.

    Tipps

    Der Betrag einer Zahl (außer null) ist positiv, z.B. gilt $\vert 10\vert =10$.

    Der negative Betrag einer Zahl (außer null) ist negativ, z.B. gilt ${-\vert 10\vert} ={-10}$.

    Für den Betrag eines Rechenausdrucks berechne erst den Ausdruck, dann den Betrag. Es gilt beispielsweise:

    $\vert 2\cdot 5\vert = \vert 10\vert= 10$.

    Lösung

    All diese Aufgaben kannst du nach den folgenden Leitsätzen lösen:

    1. Der Betrag einer Zahl (außer null) ist positiv.
    2. Der negative Betrag einer Zahl (außer null) ist negativ.
    3. Für den Betrag eines Rechenausdrucks berechne erst den Ausdruck, dann den Betrag.
    Bei diesen Umformungen wurden der erste und der dritte Leitsatz angewendet:
    • ${\vert {-5}\cdot 3\vert}=\vert {-15}\vert=15$
    • ${\vert {15}-30\vert}={\vert {-15}\vert}=15$
    • ${\vert {20-11}\vert}={\vert {9}\vert}=9$
    • ${\vert {27}: ({-3})\vert}={\vert {-9}\vert}=9$
    • ${\vert 11-20 \vert}={\vert {-9} \vert}=9$
    • ${\vert 20-11\vert}={\vert 9 \vert}=9$
    Bei den anderen Umformungen wurden jeweils der zweite und der dritte Leitsatz angewendet:
    • ${-\vert {-5}\cdot 3\vert}={-\vert {-15}\vert}={-(+15)}={-15}$
    • ${-\vert 3\cdot 5\vert}={-\vert 15\vert}={-15}$
    • ${-\vert 25-10\vert}={-\vert 15\vert}={-15}$
    • ${-\vert {-15}+30\vert}={-\vert 15\vert}={-15}$
    • ${-\vert {3}\cdot 3\vert}={-\vert 9 \vert}={-9}$
    • ${-\vert {27}: 3\vert}={-\vert 9\vert}={-9}$
    • ${-\vert 20-11 \vert}={-\vert 9 \vert}={-9}$

  • Ordne die Ausdrücke ihrer Größe nach auf der Zahlengeraden ein.

    Tipps

    Es gilt $\vert{-50}\vert=50$. Daher ist ${-50}\lt\vert-50\vert$.

    Wegen ${-\vert{-50}\vert}={-50}$ gilt ${-\vert{-50}\vert}\lt 50$.

    Lösung

    In der Abbildung siehst du die Ergebnisse der Rechnungen direkt an der richtigen Stelle auf der Zahlengerade eingeordnet. Hier siehst du nochmal alle Rechnungen, die zu den Werten führen. Wir starten dabei mit dem kleinsten Wert.

    • $-\vert 2\cdot 20 \vert={-\vert 40\vert}={-40}$
    • $-\vert 10-45\vert={-\vert {-35}\vert}={-35}$
    • $-\vert {-25}\vert={-25}$
    • $-\vert {18}\vert={-18}$
    • $\vert 0\vert=0$
    • $\vert{-10}\vert=10$
    • $\vert {-18}\vert=18$
    • $\vert {-35}\vert=35$
    • $\vert 90-(+50))\vert={\vert 40\vert}=40$
    • $\vert ({-5})\cdot 11\vert={\vert -55\vert}=55$
  • Vereinfache die Betragsausdrücke so weit wie möglich.

    Tipps

    Der Betrag einer Zahl (außer null) ist immer positiv.

    Zum Beispiel gelten folgende Gleichungen:

    • $\vert {-6}\vert =6$,
    • $\vert 6\vert =6$.
    Es gelten auch folgende Gleichungen:

    • $\vert {-500}\vert =500$,
    • $\vert 500\vert =500$.
    Lösung

    Der Betrag einer Zahl ist der Abstand dieser Zahl zur Null. Da Abstände immer positiv oder null sind, sind auch Beträge immer positiv oder null.

    Der Betrag einer Zahl (außer null) ist positiv:

    • ${\vert {-5}\vert}= {5}$,
    • $\vert {8800}\vert={8800}$,
    • ${\vert {-11000}\vert}=11000$,
    • ${\vert {-2}\vert}=2 $.
    Der Betrag von null ist null:
    • $\vert 0\vert = 0$.

  • Berechne die Rechenausdrücke mit Beträgen.

    Tipps

    Der Betrag einer Zahl (außer null) ist positiv.

    Hier siehst du ein Beispiel für

    $a={-50}$ und $b=3$.

    • $\vert a \vert = \vert {-50}\vert = 50$
    • $\vert b \vert = \vert {3}\vert = 3$
    • $\vert a-b \vert = \vert {{-50}-3}\vert = \vert {-53}\vert = 53$
    • $\vert a \vert - \vert b \vert = \vert {-50}\vert-\vert{3}\vert = 50 - 3 = 47$

    Näheres zu dem Beispiel aus dem zweiten Tipp:

    $\underbrace{\underbrace{\vert {-50}\vert}_{\text{erster Betrag}}-\underbrace{\vert{3}\vert}_{\text{zweiter Betrag}}}_{\text{Differenz zweier Beträge}} = \underbrace{50}_{\text{erster Betrag}} - \underbrace{3}_{\text{zweiter Betrag}} = 47$.

    Lösung

    Erste Aufgabe: $~ a=7, ~ b={-8}$

    • $\vert {a}\vert = \vert {7}\vert =7$
    • $\vert {b}\vert = \vert {-8}\vert = {8}$
    Bei der Aufgabe ${\vert {a-b}\vert}$ handelt es sich um den Betrag eines Rechenausdrucks, hier der Betrag einer Differenz. Um den Betrag zu berechenen, musst zu zuerst die Rechnung lösen.
    $ \underbrace{\vert ~ \underbrace{a-b}_{\text{Differenz}} ~\vert}_{\text{Betrag einer Differenz}} = \vert ~ \underbrace{7-(-8)}_{\text{Differenz}} ~\vert = \vert \underbrace{15}_{\text{Differenz}} \vert = {15}$

    Bei der Aufgabe ${\vert {a}\vert}-{\vert {b}\vert}$ hingegen handelt es sich um einen Rechenausdruck, in denen Beträge enthalten sind, hier eine Differenz von Beträgen. Um den einen Betrag vom anderen abziehen zu können, musst du erst die einzelnen Beträge ausrechnen.
    $ \underbrace{\underbrace{\vert {a}\vert}_{\text{erster Betrag}} - \underbrace{\vert {b}\vert}_{\text{zweiter Betrag}}}_{\text{Differenz zweier Betr}\ddot{\text{a}}\text{ge}} = \underbrace{\vert {7}\vert}_{\text{erster Betrag}} - \underbrace{\vert {-8}\vert}_{\text{zweiter Betrag}} = \underbrace{7}_{\text{erster Betrag}}-\underbrace{8}_{\text{erster Betrag}} = {-1}$

    Zweite Aufgabe: $~ a={-3}, ~ b={2}$

    • $\vert {a}\vert = \vert {-3}\vert = 3$
    • $\vert {b}\vert = \vert {2}\vert = {2}$
    • ${\vert {a-b}\vert} = {\vert {{-3}-{2}}\vert} = {\vert {-5}\vert} = 5$
    • ${\vert {a}\vert}-{\vert {b}\vert} = {\vert {-3}\vert}-{\vert {2}\vert} = {3}-{2} =1$
    Dritte Aufgabe: $~ a={10000}, ~ b={-6000}$
    • $\vert {a}\vert = \vert {10000}\vert = 10000$
    • $\vert {b}\vert = \vert {-6000}\vert = {6000}$
    • ${\vert {a-b}\vert} = {\vert {{10000}-({-6000})}\vert} = {\vert {16000}\vert} = 16000$
    • ${\vert {a}\vert}-{\vert {b}\vert} = {\vert {10000}\vert}-{\vert {-6000}\vert} = {10000}-{6000} =4000$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

2.230

sofaheld-Level

3.746

vorgefertigte
Vokabeln

10.812

Lernvideos

44.107

Übungen

38.765

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden