Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Negative Zahlen im Koordinatensystem

In einem kartesischen Koordinatensystem lassen sich Punkte im Raum durch Koordinaten beschreiben. Erfahre, wie man mit negativen Zahlen umgeht und wie diese mithilfe von Zahlengeraden dargestellt werden können. Interessiert? All das und noch mehr findest du im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.0 / 165 Bewertungen
Die Autor*innen
Avatar
Mathe-Team
Negative Zahlen im Koordinatensystem
lernst du in der 5. Klasse - 6. Klasse

Negative Zahlen im Koordinatensystem Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Negative Zahlen im Koordinatensystem kannst du es wiederholen und üben.
  • Gib die Eigenschaften eines erweiterten Koordinatensystems an.

    Tipps

    Das erweiterte Koordinatensystem besteht aus zwei Zahlengeraden.

    Der Koordinatenursprung kann auch als Punkt $U(0|0)$ angegeben werden.

    Lösung

    Durch die Erweiterung des Koordinatensystems sind aus zwei senkrecht zueinander stehenden Zahlenstrahlen, zwei senkrecht zueinander stehende Zahlengerade geworden.

    Das erweiterte Koordinatensystem besteht aus zwei Zahlengeraden. Die eine Zahlengerade heißt x-Achse und geht von links nach rechts. Senkrecht zur x-Achse und durch den Koordinatenursprung verläuft die andere Zahlengerade. Sie wird als y-Achse bezeichnet. In unserem Beispiel sehen wir auf der x- und y-Achse jeweils nur einen Ausschnitt von -6 bis 6. Da die zwei Achsen im rechten Winkel stehen, bildet sich ein Koordinatengitter, das aus gleich großen Kästen besteht. Wenn wir Punkte im Koordinatensystem beschreiben wollen, benutzen wir Koordinaten. Wir nennen immer als erstes die x- und dann die y-Koordinate, wenn wir einen Punkt beschreiben.

    In unserem Beispiel sind zwei Punkte angegeben:

    $A(2|3)$ und $B(-3|-1)$.

  • Bestimme die Koordinaten der angegebenen Punkte.

    Tipps

    Um einen Punkt zu beschreiben, benötigen wir die x- und y-Koordinate des Punktes.

    Die x-Koordinate gibt an, um wie viele LE (Längeneinheiten) der Punkt nach rechts oder links verschoben ist.

    Die y-Koordinate gibt an, um wie viele LE (Längeneinheiten) der Punkt nach oben oder unten verschoben ist.

    Lösung

    Wir sollen die Koordinaten der Punkte in dem Koordinatensystem ermitteln.

    Um einen Punkt zu beschreiben, benötigen wir die x- und y-Koordinate des Punktes.

    Wenn weder Zentimeter noch andere Einheiten angegeben sind, sprechen wir meist einfach von Längeneinheiten (LE).

    Beginnen wir mit dem Punkt A. Dieser liegt oberhalb der x-Achse und links von der y-Achse.

    Punkt A ist vom Ursprung aus um eine LE nach links und um zwei LE nach oben verschoben. Seine x-Koordinate ist daher -1 und seine y-Koordinate 2. Also ist $A(-1|2)$.

    Punkt B liegt unterhalb der x-Achse und rechts von der y-Achse.

    Punkt B ist vom Ursprung aus vier LE nach rechts und zwei LE nach unten verschoben. Seine x-Koordinate ist daher 4 und seine y-Koordinate -2. Also ist $B(4|-2)$.

  • Entscheide, welche Koordinaten die eingezeichneten Punkte besitzen.

    Tipps

    Wir wissen, dass die x-Achse jeweils die horizontale Linie (von links nach rechts) und die y-Achse die vertikale Linie (von unten nach oben) darstellt.

    Gibt ein Kästchen auch wirklich immer eine Längeneinheit (LE) an? Oder ist das von Diagramm zu Diagramm unterschiedlich?

    Lösung

    Das schwierige bei der Aufgabe ist es, dass wir jeweils nur Ausschnitte der Koordinatensysteme sehen.

    Aber in den Ausschnitten sind genügend Informationen, damit wir die Koordinaten der markierten Punkte bestimmen können.

    Wir wissen, dass die x-Achse jeweils die horizontale (von links nach rechts) Linie und die y-Achse die vertikale (von unten nach oben) Linie darstellt.

    Wichtig ist nun, dass wir darauf achten, in welchem Maßstab die Achsen beschriftet sind. Gibt ein Kästchen auch wirklich eine Längeneinheit (LE) an? Oder ist das von Diagramm zu Diagramm unterschiedlich?

    Schauen wir uns die Ausschnitte einmal genauer an. (von links nach rechts)

    Diagramm 1:

    Hier sieht alles ganz „normal“ aus. Von Strich zu Strich sind es genau eine LE, auf der x-Achse, wie auch auf der y-Achse. Wir können den Punkt also einfach ablesen.

    -> A(2|2)

    Diagramm 2:

    Hier müssen wir aufpassen. Zwei Striche links von der Null entsprechen 10 LE. Das heißt, ein Strich entsprechen fünf LE. Der Punkt ist vom Ursprung aus zwei Striche nach links und drei Striche nach unten verschoben.

    -> A(-10|-15)

    Diagramm 3:

    Auch hier müssen wir wieder ganz genau hinschauen. Der Punkt ist zwar jeweils nur ein Strich nach oben und nach links verschoben, aber ein Strich entspricht zwei LE.

    -> A(-2|2)

    Diagramm 4:

    In diesem Koordinatensystem entspricht ein Strich 10 LE. Der Punkt A hat daher folgende Koordinaten.

    -> A(30|-10)

  • Entscheide, welcher Punkt in welchem Quadranten liegt.

    Tipps

    Um die Punkte den einzelnen Quadranten zuzuordnen, ist es sinnvoll, wenn wir uns ein Koodinatensystem zeichnen und die Punkte darin markieren.

    Überlege dir, welche Eigenschaften die Koordinaten der Punkte in den einzelnen Quadranten haben. Wie unterscheiden sie sich in ihren Vorzeichen?

    Lösung

    Um die Punkte den einzelnen Quadranten zuzuordnen, ist es sinnvoll, wenn wir uns ein Koodinatensystem zeichnen und die Punkte darin markieren.

    Es reicht allerdings auch aus, wenn wir uns das Koordinatensystem jeweils im Kopf mit dem darin markierten Punkt vorstellen.

    Um die Punkte zu den einzelnen Quadranten zuzuordnen, gibt es aber auch ein paar Tricks.

    Punkte, die im I. Quadranten liegen, haben immer positive x- und positive y-Koordinaten. Sie liegen vom Ursprung gesehen immer „rechts oben“.

    Punkte, die im II. Quadranten liegen, haben immer eine negative x-Koordinate und eine positive y-Koordinate. Sie liegen vom Ursprung gesehen immer „links oben“.

    Punkte, die im III. Quadranten liegen, haben immer eine negative x- und eine negative y-Koordinate. Sie liegen vom Ursprung gesehen immer „links unten“.

    Punkte, die im IV. Quadranten liegen, haben immer eine positive x-Koordinate und eine negative y-Koordinate. Sie liegen vom Ursprung aus gesehen immer „rechts unten“.

  • Bestimme die Koordinaten des Punktes P im Koordinatensystem.

    Tipps

    Überlege dir, wie viele Einheiten einem Kästchen in der Höhe sowie der Breite entsprechen.

    Punkt P ist zwei Einheiten nach rechts entlang der x-Achse und drei Einheiten parallel zur y-Achse nach oben verschoben.

    Lösung

    Die Koordinaten des Punktes sind P(2|3).

    Wir haben ein Koordinatensystem, das einen Ausschnitt von -5 bis 5 auf der x-, sowie auf der y-Achse zeigt, gegeben. Ein Kästchen ist je eine Einheit breit (Richtung x-Achse) bzw. hoch (Richtung y-Achse).

    P ist um zwei Einheiten nach rechts auf der x-Achse und drei Einheiten nach oben parallel zur y-Achse vom Ursprung aus verschoben.

    Wenn wir die Koordinaten eines Punktes angeben wollen, geben wir immer zu erst die x- und dann die y-Koordinate des Punktes an.

  • Berechne den Inhalt der von den vier Punkten P, Q, R und S eingeschlossenen Fläche.

    Tipps

    Um die Fläche des Rechtecks P,Q,R,S zu berechnen, müssen wir die Streckelängen $\lvert \overline{SR}\rvert$ mit der Streckenlänge $\lvert \overline{QR}\rvert$ multiplizieren.

    Die Strecke $\overline{SR}$ geht von Punkt S zu Punkt R. Die y-Koordinate bleibt gleich. Entlang der x-Achse gehen wir von -4 zu 2.

    Die Strecke $\overline{QR}$ läuft von Punkt Q zu Punkt R. Hierbei bleibt die x-Koordinate konstant. Es verändert sich lediglich die y-Koordinate. Parallel zur y-Achse verläuft die Strecke von 2 zu -1.

    Lösung

    Wenn man die vier Punkte P,Q,R und S miteinander verbindet, entsteht ein Rechteck. Das Rechteck besteht aus je zwei gleich langen Seiten: $\overline{PQ}$ und $\overline{SR}$ sowie $\overline{PS}$ und $\overline{QR}$.

    Um die Fläche des Rechtecks P,Q,R,S zu berechnen, müssen wir die Streckenlängen $\lvert \overline{SR}\rvert$ mit der Streckenlänge $\lvert\overline{QR}\rvert$ multiplizieren.

    Um die Länge der Strecken zu bestimmen, müssen wir zunächst die Koordinaten der Punkte im Koordinatensystem ablesen.

    $P(-4|2)$

    $Q(2|2)$

    $R(2|-1)$

    $S(-4|-1)$

    Die Strecke $\overline{SR}$ geht also von Punkt $S(-4|-1)$ zu Punkt $R(2|-1)$. Die y-Koordinate bleibt gleich. Entlang der x-Achse gehen wir von -4 zu 2. Das heißt, insgesamt sechs Einheiten nach rechts. Die Strecke $\overline{SR}$ ist also 6 LE (Längeneinheiten) lang.

    Die Strecke $\overline{QR}$ läuft von Punkt $Q(2|2)$ zu Punkt $R(2|-1)$. Hierbei bleibt die x-Koordinate konstant. Es verändert sich lediglich die y-Koordinate. Parallel zur y-Achse verläuft die Strecke von 2 zu -1. Also insgesamt drei Einheiten nach unten. Die Strecke $\overline{QR}$ ist 3 LE lang.

    Wenn wir nun den Flächeninhalt des Rechtecks, welches von den vier Punkten begrenzt wird, berechnen wollen, müssen wir folgende Rechnung machen:

    $\begin{array}{lll} A &=& 6LE\cdot 3LE \\ &=& 18FE \end{array}$

    FE soll hier für Flächeneinheiten stehen. Das Rechteck ist also 18 FE groß.