30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Änderung in Prozent mittels Anfangswert und Endwert 03:07 min

Textversion des Videos

Transkript Änderung in Prozent mittels Anfangswert und Endwert

Xenia ist ein großer Fan von Social Media. Um die Anzahl ihrer Follower auf VidPicStar zu erhöhen, will sie herausfinden, welche Art von Posts den Leuten am besten gefällt. Zuerst veröffentlicht sie ein witziges Video, das sie im Zoo aufgenommen hat. Vorher hatte sie 240 Follower. Der Post ist ein voller Erfolg! Jetzt folgen ihr 312 User. Wie erfolgreich war sie? Lass uns die Änderung in Prozent berechnen, um den Zugewinn an Followern besser vergleichbar zu machen. Die Änderung in Prozent entspricht der Differenz von Endwert und Anfangswert geteilt durch den Anfangswert. Das Ergebnis ist eine Kommazahl, also musst du sie mit einhundert multiplizieren, um die Änderung in Prozent herauszubekommen. Je nach Vorzeichen handelt es sich um eine Zu - oder Abnahme? Lass uns nun Zahlen in die Formel einsetzen. Xenia hatte anfangs 240 Follower, nach dem Post stieg die Anzahl auf 312. 312 minus 240 geteilt durch 240. Die Differenz, 72, dividiert durch 240, ergibt drei Zehntel oder 0,3. Um das Ergebnis in die Prozentzahl umzuwandeln, multiplizierst du mit einhundert, das ergibt 30. Um den Prozentsatz anzugeben dividierst du nun beide Seiten durch 100. 30 Einhundertstel ist das Gleiche wie 30%. Die Änderung beträgt also plus 30 Prozent! Super! Ein Anstieg von 30 Prozent ist großartig. Aber Xenia möchte mehr Follower also postet sie ein Foto von ihrem köstlichen Muffin. Wird das Foto die Zahl ihrer Follower in die Höhe schießen lassen? Oh nein! Im Gegenteil. Die Zahl ihrer Follower ist auf 265 gesunken. Wie lautet die Änderung in Prozent? Wieder können wir unsere Formel benutzen, um das herauszufinden. Zuerst berechnen wir die Differenz aus Endwert- und Anfangswert, also 265 minus 312 und teilen durch den Anfangswert, also 312. Die Differenz beträgt minus 47. Dividiert durch 312, ergibt minus 15 Hundertstel oder minus 0,15. Minus 0,15 mal einhundert ist gleich minus 15. Auch hier kannst du wieder beide Seiten durch 100 teilen und durch 100 als Prozent schreiben. Xenias Anzahl von Followern ist also um 15 Prozent gesunken. Der letzte Post hat ihnen nicht wirklich gefallen - Essens-Fotos sind sowas von out! Xenia startet einen neuen Versuch. Ein Selfie. Vielleicht wird sie das auf den Olymp der Social-Media Stars bringen.

2 Kommentare
  1. Default

    super weiter so

    Von Michi Kreuser, vor etwa einem Monat
  2. Default

    Mega tolles Video! 👍🏼
    I love Team Digital ❤️

    Von Pink Fluffy Unicorn Dancing On Rainbow, vor 4 Monaten

Änderung in Prozent mittels Anfangswert und Endwert Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Änderung in Prozent mittels Anfangswert und Endwert kannst du es wiederholen und üben.

  • Bestimme die korrekten Aussagen zu Änderungen in Prozent.

    Tipps

    Eine Differenz ist das Ergebnis der Subtraktion zweier Zahlen. Sie kann positiv oder negativ sein.

    Der Begriff „Prozent“ hat seinen Ursprung im Lateinischen und bedeutet „von Hundert“.

    Lösung

    Diese Aussagen sind falsch:

    • Änderungen in Prozent sind ausschließlich positiv.
    Je nachdem, welches Vorzeichen die Differenz aus End- und Anfangswert hat, können Änderungen in Prozent positiv oder negativ sein. Die Änderung ist genau dann negativ, wenn der Endwert kleiner als der Anfangswert ist, also:

    $\text{Endwert}-\text{Anfangswert}<0$

    • Die prozentuale Änderung berechnest du, indem du den Endwert durch den Anfangswert teilst.
    Die korrekte Formel für die Berechnung von Änderungen in Prozent lautet:

    $\ddot{\text{A}}\text{nderung}=\frac{\text{Endwert}-\text{Anfangswert}}{\text{Anfangswert}}$

    Diese Aussagen sind richtig:

    • Um eine Dezimalzahl in Prozent anzugeben, musst du sie mit $100$ multiplizieren.
    Hier solltest du dir klar machen, was genau mit dieser Aussage gemeint ist. Du multiplizierst die Dezimalzahl nicht tatsächlich mit $100$. Das ist lediglich eine Hilfsvorstellung, um denjenigen Wert zu erhalten, hinter den du dann ein Prozentzeichen schreibst:

    $\begin{array}{llll} &0,45\cdot 100 & = & 45\\ \Rightarrow &0,45 & = & 45\, \% \end{array}$

    Beachte also die Gleichung in der letzten Zeile: $0,45=45\,\%$.
    Dagegen ist $0,45\cdot 100 = 45 = 4500\,\%$!

    • Änderungen in Prozent berechnest du, indem du die Differenz aus End- und Anfangswert durch den Anfangswert teilst.
    Das ist die Formel für die Berechnung in Worten ausgedrückt. Die Differenz aus End- und Anfangswert im Zähler wird durch den Anfangswert im Nenner geteilt.

    • Das Vorzeichen der Differenz aus End- und Anfangswert bestimmt, ob die Änderung positiv oder negativ wird.
    Ist der Endwert kleiner als der Anfangswert, dann hat in dem Prozess, der beobachtet wird (z.B. die Änderung der Anzahl an Followern) eine Abnahme stattgefunden. Dies drückt sich dann durch ein negatives Vorzeichen der Änderung aus. Ist der Endwert größer als der Anfangswert, dann hat eine Zunahme stattgefunden, und das Vorzeichen der Änderung ist positiv. Sind Anfangs- und Endwert gleich, dann gibt es weder Zu- noch Abnahme, und der Wert der Änderung ist $0$ ($=0\,\%$).

  • Beschreibe das Verfahren zur Berechnung von Änderungen in Prozent.

    Tipps

    In der Mathematik gilt die Regel „Punkt vor Strich“. Sie besagt, dass Multiplikation und Division vor Addition und Subtraktion ausgeführt werden. Allerdings werden Terme in Klammern trotzdem immer zuerst ausgerechnet, auch wenn darin eine Summe oder eine Differenz steht.

    Einen Bruch kannst du dir als eine Division vorstellen, bei der Zähler und Nenner in Klammern stehen:

    $\frac{a+b-c}{x-y+z}=(a+b-c)\div(x-y+z)$

    Hier werden also zunächst die Summen und Differenzen in Zähler und Nenner berechnet und erst dann die Division durchgeführt.

    Lösung

    Die Formel zur Berechnung prozentualer Änderungen lautet:

    $\ddot{\text{A}}\text{nderung}=\frac{\text{Endwert}-\text{Anfangswert}}{\text{Anfangswert}}$

    Wenn du also Anfangs- und Endwert kennst, dann kannst du sie in die Formel einsetzen und die folgenden Schritte nacheinander abarbeiten, um die Prozentzahl zu erhalten:

    • Zuerst berechnest du die Differenz aus End- und Anfangswert.
    • Diese Differenz teilst du durch den Anfangswert.
    • Das Ergebnis der Division ist eine Dezimalzahl.
    • Die Dezimalzahl multiplizierst du mit $100$.
    • Hinter dieses Ergebnis schreibst du ein Prozentzeichen, um die fertige Prozentzahl zu erhalten.
  • Berechne die Änderung in Prozent.

    Tipps

    Die korrekte Formel für die Berechnung von Änderungen in Prozent lautet:

    $\ddot{\text{A}}\text{nderung}=\frac{\text{Endwert}-\text{Anfangswert}}{\text{Anfangswert}}$.

    Um eine Dezimalzahl in Prozent anzugeben, multiplizierst du sie mit $100$ und schreibst dann ein Prozentzeichen hinter das Ergebnis.

    Wenn du zum Beispiel $0,7$ als Prozentzahl angeben willst, geht das so:

    $\begin{array}{llll} & 0,7\cdot 100 & = & 70\\ \Rightarrow & 0,7 & = & 70\,\% \end{array}$

    Lösung

    Xenia führt ihre Rechnung in der folgenden Reihenfolge durch:

    • Zuerst stellt sie die Formel für die Änderung in Prozent auf:
    • „$\ddot{\text{A}}\text{nderung}=\frac{312-240}{240}$“
    Die korrekte Formel für die Berechnung von Änderungen in Prozent lautet:

    $\ddot{\text{A}}\text{nderung}=\frac{\text{Endwert}-\text{Anfangswert}}{\text{Anfangswert}}$

    In diese Gleichung setzt sie die Anzahl ihrer Follower vor dem Posten des Bilds (Anfangswert) und danach (Endwert) ein.

    • Das berechnet sie zu: $\frac{72}{240}=\frac{3}{10}=0,3$
    • Und gibt die Lösung in Prozent an:
    • „$0,3 = 30\%$“
    Um eine Dezimalzahl in Prozent anzugeben, multiplizierst du sie mit $100$ und schreibst dann ein Prozentzeichen hinter das Ergebnis:

    $\begin{array}{llll} & 0,3\cdot 100 & = & 30\\ \Rightarrow & 0,3 & = & 30\,\% \end{array}$

  • Erarbeite, wie du den Anfangswert bestimmen kannst.

    Tipps

    Einen Quotienten kann man als Bruch schreiben, man kann aber auch „$:$“ benutzen.

    Um eine Dezimalzahl in eine Prozentzahl umzurechnen, multiplizierst du sie mit $100$ und schreibst dann ein Prozentzeichen dahinter. Hier rechnest du eine Prozentangabe in eine Dezimalzahl um, also teilst du die Zahl vor dem Prozentzeichen durch $100$.

    Lösung

    Den Lückentext kannst du so vervollständigen:

    „(...) die Formel zur Berechnung von prozentualen Änderungen:

    $\text{Änderung}=(\text{Endwert}-\text{Anfangswert}):\text{Anfangswert}$.

    Er weiß, dass man eine Änderung von $20~\%$ in Dezimalzahlen als $0,2$ ausdrückt. Dann setzt er alles Gegebene in die Gleichung ein.“

    • Um eine Dezimalzahl in eine Prozentzahl umzurechnen, multiplizierst du sie mit $100$ und schreibst dann ein Prozentzeichen dahinter. Hier rechnest du eine Prozentangabe in eine Dezimalzahl um, also teilst du die Zahl vor dem Prozentzeichen durch $100$: $\frac{20}{100}=0,2$
    „$-0,2=\frac{55,99-a}{a}$.“

    • Hier wurde $0,2$ für die Änderung in Prozent, $55,99$ für den Endwert und $a$ als Variable für den Anfangswert eingesetzt.
    „Doch wie kann er jetzt den Anfangswert $a$ bestimmen? Dazu muss er die Gleichung zuerst mit $a$ multiplizieren (...).“

    • Um die Variable $a$ im Nenner auf der rechten Seite loszuwerden, multiplizieren wir beide Seiten der Gleichung mit $a$.
    „Anschließend muss er die Gleichung nach $a$ auflösen.“

    • Um den Anfangswert $a$ zu bestimmen, lösen wir die Gleichung nach $a$ auf.
    „Der Rucksack hat also ursprünglich $69,99~€$ gekostet.“

  • Bestimme die Änderungen in Prozent.

    Tipps

    Die Veränderungen in Prozent kannst du berechnen, indem du die Mitgliederzahlen in den jeweiligen Jahren in die bekannte Formel einsetzt.

    Die Formel lautet:

    $\ddot{\text{A}}\text{nderung}=\frac{\text{Endwert}-\text{Anfangswert}}{\text{Anfangswert}}$

    Lösung

    Die Veränderungen in Prozent kannst du berechnen, indem du die Mitgliederzahlen in den jeweiligen Jahren in die bekannte Formel einsetzt. Diese lautet:

    $\ddot{\text{A}}\text{nderung}=\frac{\text{Endwert}-\text{Anfangswert}}{\text{Anfangswert}}$

    Damit ergibt sich für den Zeitraum $2009$ bis $2011$:

    $\ddot{\text{A}}\text{nderung}=\frac{69485-78064}{78064}\approx -0,1099=-10,99\,\%$

    Analog kannst du die Veränderungen über die anderen Zeiträume bestimmen:

    • Im Zeitraum $2011$-$2013$ hat sich die Mitgliederzahl um $-8,23\,\%$ verändert.
    • Die Veränderung zwischen den Jahren $2013$ und $2015$ betrug $-7,48\,\%$.
    • Von $2015$ bis $2017$ hat sich die Mitgliederzahl um $5,60\,\%$ geändert.
    Von $2009$ bis $2015$ ist die Mitgliederzahl also gefallen (negatives Vorzeichen der Änderung!), von $2015$ bis $2017$ wieder gestiegen.

  • Bestimme die Änderungen in Prozent.

    Tipps

    Die Tabelle kannst du vervollständigen, indem du die Änderungen in Prozent mit der bekannten Formel berechnest:

    $\ddot{\text{A}}\text{nderung}=\frac{\text{Endwert}-\text{Anfangswert}}{\text{Anfangswert}}$

    Julias Mutter betrachtet hier die Änderung des Smartphonekonsums ihrer Tochter über mehrere Zeiträume. Der Anfang dieses Zeitraums ist immer der jeweilige Vortag, das Ende der jeweils aktuelle Tag (der gleichzeitig der Anfang des nächsten Zeitraumes ist).

    Den Wert des Vortags kannst du entweder aus der nächsthöheren Spalte der Tabelle ablesen oder aus der Differenz berechnen:

    $\text{Anfangswert}=\text{Endwert}- \text{Differenz}$

    Lösung

    Die Tabelle kannst du vervollständigen, indem du die Änderungen in Prozent mit der bekannten Formel berechnest. Hierbei ist jeweils der Wert des aktuellen Tages der Endwert und der des Vortags der Anfangswert:

    $\ddot{\text{A}}\text{nderung}=\frac{\text{Endwert}-\text{Anfangswert}}{\text{Anfangswert}}=\frac{\text{Differenz}}{\text{Wert des Vortags}}$

    In der ersten Zeile ergibt sich für die Differenz:

    $\text{Differenz}=120-100=20$ und schließlich für die Änderung:

    $\ddot{\text{A}}\text{nderung}=\frac{20}{100}=0,2=20\,\%$

    Den Wert des Vortags kannst du entweder aus der nächsthöheren Spalte der Tabelle ablesen oder aus der Differenz berechnen:

    $\text{Anfangswert}=\text{Endwert}- \text{Differenz}$

    In der zweiten Zeile ergibt sich:

    $\text{Anfangswert}=300-180=120$

    Und als Änderung entsprechend:

    $\ddot{\text{A}}\text{nderung}=\frac{180}{120}=1,5=150\,\%$

    In der dritten und vierten Zeile kannst du genauso verfahren wie in den ersten beiden Zeilen. So kannst du die Tabelle vervollständigen:

    $\begin{array}{cccc} \text{Nutzungsdauer}& \text{Nutzungsdauer Vortag} & \text{Differenz}& \ddot{\text{A}}\text{nderung in }\%\\ \hline 120 &100 &20 &20 \\ 300 &120 & 180 &150\\ 150 & 300 & -150 &-50\\ 220 & 150 & 70 & 46,67\\ \end{array}$