Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Prozente, Brüche und Dezimalbrüche ineinander umwandeln

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 319 Bewertungen
Die Autor*innen
Avatar
Team Digital
Prozente, Brüche und Dezimalbrüche ineinander umwandeln
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Prozente, Brüche und Dezimalbrüche ineinander umwandeln Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Prozente, Brüche und Dezimalbrüche ineinander umwandeln kannst du es wiederholen und üben.
  • Tipps

    Hier siehst du, wie du eine Dezimalzahl in Prozent umwandeln kannst:

    $0{,}01=0{,}01\cdot 100\ \%=1\ \%$.

    Da das Prozentzeichen "von Hundert" bedeutet und somit dem Bruch $\frac1{100}$ entspricht, wird oben nur mit dem Faktor $1$ multipliziert, denn es gilt:

    $100\ \%=100\cdot \frac1{100}=\frac{100}{100}=1$.

    Ein Bruch setzt sich aus einem Zähler $a$, dem Bruchstrich und einem Nenner $b$ zusammen. Der Bruch $\frac{a}{b}$ kann gelesen werden als "$a$ geteilt durch $b$". Das Ausführen der Division liefert eine Dezimalzahl.

    Lösung

    Du sollst in dieser Aufgabe eine Dezimalzahl und einen Bruch in Prozent umrechnen. Bevor wir diese Aufgabe gemeinsam durchgehen, klären wir die allgemeine Vorgehensweise beim Umwandeln einer Dezimalzahl in Prozent und eines Bruches in Prozent.

    Dezimalzahl $\mathbf{\rightarrow}$ Prozent

    Die Umwandlung einer Dezimalzahl in Prozent erfolgt in einem Schritt. Dafür multiplizieren wir die Dezimalzahl mit $100\ \%$. Es gilt also:

    • Dezimalzahl $\xrightarrow{\cdot 100\ \%}$ Prozent

    Bruch $\mathbf{\rightarrow}$ Prozent

    Die Umwandlung eines Bruches in Prozent erfolgt über zwei Schritte. Zunächst wird der Bruch in eine Dezimalzahl umgewandelt. Dies erfolgt beispielsweise durch eine schriftliche Division von Zähler und Nenner. Dann erfolgt die Umwandlung der resultierenden Dezimalzahl in Prozent. Dafür multiplizieren wir wieder die Dezimalzahl mit $100\ \%$. Es gilt also:

    • Bruch $\xrightarrow{\text{dividieren}}$ Dezimalzahl $\xrightarrow{\cdot 100\ \%}$ Prozent
    Nun wenden wir diese Regeln für die Umwandlung auf unsere beiden Beispiele an.

    Beispiel 1

    • $0{,}125\ \xrightarrow{\cdot 100\%}\ 12{,}5\ \%$
    Beispiel 2

    • $\frac38\ \xrightarrow{3\ \text{durch}\ 8\ \text{dividieren}}\ 0{,}375\ \xrightarrow{\cdot 100\ \%}\ 37{,}5\ \%$
    Die Division von $3$ durch $8$ kann schriftlich oder im Kopf erledigt werden.

  • Tipps

    Ein Dezimalbruch ist ein Bruch, dessen Nenner eine Zehnerpotenz ist. Eine Zehnerpotenz ist gegeben durch $10^n$ mit $n\in \mathbb{N}$.

    Schau dir folgende Beispiele an:

    $0,1=\frac{1}{10}$
    $0,01=\frac{1}{100}$
    $0,001=\frac{1}{1000}$

    Schau dir folgendes Beispiel an:

    $0,52=\frac{52}{100}=\frac{13}{25}$.

    Das Prozentzeichen bedeutet "von Hundert" und entspricht $\frac1{100}$. Somit gilt:

    $52\%=52\cdot\frac1{100}=\frac{52}{100}=\frac{13}{25}$.

    Lösung

    Du sollst in dieser Aufgabe beschreiben, wie du eine Dezimalzahl und eine Prozentangabe in einen Bruch umrechnen kannst. Lass uns das gemeinsam behandeln.

    Dezimalzahl $\mathbf{\rightarrow}$ Bruch

    Die Umwandlung einer Dezimalzahl in einen Bruch erfolgt in zwei Schritten. Zunächst wird die Dezimalzahl in einen Dezimalbruch umgewandelt. Die Anzahl $n$ der Nachkommastellen verrät dir, welche Zehnerpotenz $10^n$ in deinem Nenner stehen muss. Wenn du den Dezimalbruch soweit wie möglich kürzt, erhältst du den gesuchten Bruch. Es gilt also:

    • Dezimalzahl $\xrightarrow{\cdot \frac{10^n}{10^n}}$ Dezimalbruch $\xrightarrow{\text{k}\ddot{u}\text{rzen}}$ Bruch

    Prozent $\mathbf{\rightarrow}$ Bruch

    Die Umwandlung einer Prozentangabe in einen Bruch erfolgt über zwei Schritte. Zunächst wird die Prozentangabe in einen Dezimalbruch umgewandelt, indem durch $100$ geteilt und das Prozentzeichen weggelassen wird. Anschließend wird der Dezimalbruch soweit wie möglich gekürzt. Es gilt also:

    • Prozent $\xrightarrow{:100\%}$ Dezimalbruch $\xrightarrow{\text{k}\ddot{u}\text{rzen}}$ Prozent.
    Nun wenden wir diese Regeln für die Umwandlung auf unsere beiden Beispiele an.

    Beispiel 1

    Wir betrachten die Dezimalzahl $0,125$. Diese hat drei Nachkommastellen, also wandeln wir in einen Dezimalbruch um, dessen Nenner $10^3=1000$ entspricht.

    • $0,125\ \xrightarrow{\cdot \frac{1000}{1000}}\ \frac{125}{1000}$
    Diesen Dezimalbruch können wir noch kürzen, denn Zähler und Nenner haben den gemeinsamen Teiler $125$. Wir erhalten:

    • $\frac{125}{1000}\ \xrightarrow{\text{k}\ddot{u}\text{rzen}}\ \frac{1}{8}$.
    Beispiel 2

    Die Prozentangabe $50\%$ rechnen wir zunächst in einen Dezimalbruch um. Dafür dividieren wir diese durch $100$ und lassen das Prozentzeichen weg.

    • $50\%\ \xrightarrow{:100\%}\ \frac{50}{100}$
    Diesen Dezimalbruch können wir noch kürzen, da Zähler und Nenner den gemeinsamen Teiler $50$ haben.

    • $\frac{50}{100}\ \xrightarrow{\text{k}\ddot{u}\text{rzen}}\ \frac12$
  • Tipps

    Den Bruchteil des markierten Bereichs erhältst du, indem du die Anzahl der markierten Felder zu der Gesamtanzahl der Felder ins Verhältnis setzt.

    Wichtig: Das geht nur, wenn die Felder gleich groß sind.

    Betrachten wir hier die grau markierten Felder. Wir erhalten somit einen Bruchteil von $\frac38$.

    Kürze den Bruch soweit wie möglich.

    Einen Bruch kannst du in eine Prozentangabe umwandeln, indem du den Zähler durch den Nenner teilst und das Resultat mit $100\%$ multiplizierst. Hier siehst du ein Beispiel:

    $\frac38=0,375=37,5\%$.

    Lösung

    Das Vorgehen in dieser Aufgabe wird anhand des rechts dargestellten Beispiels verdeutlicht.

    Abgebildet ist ein Rechteck, welches in $16$ gleich große Felder unterteilt ist. Davon sind $4$ Felder grün markiert. Setzen wir die Anzahl der markierten Felder zu der Gesamtanzahl ins Verhältnis, so erhalten wir folgenden Bruch:

    $\frac4{16}=\frac{1}{4}$.

    Um diesen Bruch in eine Prozentangabe umzuwandeln, dividieren wir zunächst $1$ durch $4$ und erhalten folgende Dezimalzahl:

    $1:4=0,25$.

    Die Dezimalzahl multiplizieren wir mit $100\%$ und erhalten schließlich folgende Prozentangabe:

    $0,25\cdot 100\%=25\%$.

  • Tipps

    Eine Prozentangabe kannst du wie folgt in einen Bruch umwandeln:

    $40\%=40\cdot\frac1{100}=\frac{40}{100}=\frac25$.

    Eine Dezimalzahl kannst du wie folgt in einen Bruch umwandeln:

    $0,4=0,4\cdot\frac{100}{100}=\frac{40}{100}=\frac25$.

    Lösung

    Folgende Angaben sind uns bekannt.

    $ \begin{array}{ll} \text{Thema} & \text{Anteil vom Schuljahr} \\ \hline \text{Einf}\ddot{\text{u}}\text{hrung in Terme} & 0,25 \\ \text{Binomische Formeln} & 10\% \\ \text{Distributivgesetz} & 0,05 \\ \text{Lineare Gleichungen} & 60\% \\ \hline \end{array} $

    Die Angaben in der Spalte "Anteil vom Schuljahr" möchten wir nun in Brüche umwandeln. Dafür gehen wir wie folgt vor:

    Dezimalzahl $\rightarrow$ Bruch

    Eine Dezimalzahl wandeln wir in einen Bruch um, indem wir zunächst den Dezimalbruch aufstellen und diesen, wenn möglich, kürzen.

    Prozent $\rightarrow$ Bruch

    Eine Prozentangabe wandeln wir in einen Bruch um, indem wir zunächst durch $100\%$ teilen. Den resultierenden Dezimalbruch kürzen wir, wenn möglich. Somit erhalten wir folgende Lösung:

    $ \begin{array}{lll} \text{Gegebener Anteil} & \text{Dezimalbruch} & \text{Bruch}\\ \hline 0,25 & \frac{25}{100} & \frac14 \\ 10\% & \frac{10}{100} & \frac1{10} \\ 0,05 & \frac{5}{100} & \frac1{20}\\ 60\% & \frac{60}{100} & \frac35\\ \hline \end{array} $

    Hinweis: In der zweiten Zeile ist das Ergebnis ($\frac1{10}$) zufällig auch ein Dezimalbruch.

  • Tipps

    Ein gemischter Bruch setzt sich aus einer ganzen Zahl und einem Bruch zusammen.

    Ein Beispiel ist $5\frac12$.

    Eine periodische Dezimalzahl ist eine Zahl, bei der sich nach dem Komma eine Ziffer oder eine Folge von Ziffern unendlich oft wiederholt. Der sich wiederholende Teil wird mit einem Periodenstrich gekennzeichnet.

    Ein Beispiel für eine periodische Dezimalzahl ist $0,\bar{3}$.

    Eine Prozentangabe erkennst du an dem Prozentzeichen.

    Ein Dezimalbruch ist ein Bruch, dessen Nenner eine Zehnerpotenz ist. Eine Zehnerpotenz ist gegeben durch $10^n$ mit $n\in \mathbb{N}$.

    Zehnerpotenzen sind also $10, 100, 1~000, ...$

    Lösung

    Wir schauen uns die Aufgabe gemeinsam an. Zunächst klären wir die Begriffe.

    Bruch

    Ein Bruch setzt sich aus dem Zähler, dem Bruchstrich und dem Nenner zusammen. Dabei gilt:

    • Der Zähler ist die Zahl, die über dem Bruchstrich steht.
    • Der Bruchstrich trennt Zähler und Nenner.
    • Der Nenner ist die Zahl, die unter dem Bruchstrich steht.
    Gemischter Bruch

    Ein gemischter Bruch setzt sich aus einer ganzen Zahl und einem Bruch zusammen.

    Dezimalbruch

    Ein Dezimalbruch ist ein Bruch, dessen Nenner eine Zehnerpotenz ist. Eine Zehnerpotenz ist gegeben durch $10^n$ mit $n\in \mathbb{N}$.

    Dezimalzahl

    Eine Dezimalzahl setzt sich aus Vorkommastellen, einem Komma und Nachkommastellen zusammen.

    periodische Dezimalzahl

    Eine periodische Dezimalzahl ist eine Zahl, bei der sich nach dem Komma eine Ziffer oder eine Folge von Ziffern unendlich oft wiederholt. Der sich wiederholende Teil wird mit einem Periodenstrich gekennzeichnet.

    Prozentangabe

    „Prozent“ beschreibt das Hundertstel einer Zahl. Dass es sich um eine Prozentangabe handelt, wird durch das Prozentzeichen deutlich.

    Jetzt, wo wir die verschiedenen Zahlen definiert haben, können wir bestimmen, um welche Form es sich bei den gegebenen Zahlen handelt.

    • $0,65\ \rightarrow$ Dezimalzahl
    • $\frac{65}{100}\ \rightarrow$ Dezimalbruch
    • $65\%\ \rightarrow$ Prozent
    • $\frac{13}{20}\ \rightarrow$ Bruch
  • Tipps

    Wenn der Anteil sowie die Gesamtmenge als absolute Werte gegeben sind, so kannst du den Anteil einfach als Bruch schreiben:

    $\text{Anteil als Bruch}=\frac{\text{absoluter Wert des Anteils}}{\text{absoluter Wert der Gesamtmenge}}$

    Diesen Bruch kannst du dann durch Division von Zähler und Nenner in eine Dezimalzahl umwandeln.

    Einen Bruch kannst du durch Division von Zähler und Nenner in eine Dezimalzahl umwandeln. Um diese in Prozent anzugeben, musst du die Dezimalzahl mit $100\%$ multiplizieren.

    Lösung

    Betrachten wir die Beispiele gemeinsam.

    Beispiel 1

    Ein Kuchen ist in $8$ gleich große Stücke geteilt. Davon sind $7$ Stück bereits verzehrt. Wie groß ist der übrig gebliebene Anteil in Form einer Dezimalzahl.

    Wir haben $8$ gleich große Stücke, von denen $7$ bereits weg sind. Es ist also nur noch $1$ Stück von $8$ übrig. Dies entspricht einem Anteil von:

    $\frac18=0,125$.

    Beispiel 2

    $15$ Schüler einer vierzigköpfigen Klasse nehmen nicht an der geplanten Klassenfahrt teil. Wie viel Prozent der Klasse nimmt an der Klassenfahrt teil?

    An der Klassenfahrt nehmen $40-15=25$ Schüler teil. Dies entspricht einem prozentualen Anteil von:

    $\frac{25}{40}=0,625=0,625\cdot 100\%=62,5\%$.

    Beispiel 3

    Die Hausaufgaben haben einen Anteil von $0,4$ an der Gesamtnote. Wie hoch ist der dazugehörige Bruchteil?

    Wir müssen die Dezimalzahl $0,4$ in einen Bruch umwandeln. Es folgt:

    $0,4=\frac4{10}=\frac{2}{5}$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

Pommes der Pinguin hält einen großen gelben Stern in den Händen
Pommes der Pinguin hält einen großen gelben Stern in den Händen
30 Tage kostenlos testen
30 Tage kostenlos testen
Über 1,6 Millionen Schüler*innen nutzen sofatutor Über 1,6 Millionen Schüler*innen nutzen sofatutor
Lernpakete anzeigen
Lernpakete anzeigen
Lernpakete anzeigen