Tangente an einen Kreis konstruieren
Eine Tangente berührt einen Kreis in einem Punkt und bildet mit dem Radius einen rechten Winkel. Um eine Tangente zu zeichnen, kann man entweder ein Lot durch den Berührpunkt ziehen oder die Mittelsenkrechte vom Kreismittelpunkt zu einem außerhalb liegenden Punkt nutzen. Neugierig? Mehr Beispiele zur Konstruktion und Übungen findest du im ausführlichen Text.
- Wie sich eine Tangente an einen Kreis konstruieren lässt
- Beispiel – Paulines Shuttleroute
- Was ist eine Tangente?
- Konstruktion einer Tangente an einen Kreis
- Konstruktion einer Tangente durch einen Berührpunkt
- Konstruktion einer Tangente durch einen außerhalb liegenden Punkt

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Kreis – Definition, Begriffe und Konstruktion

Kreis – Umfang und Flächeninhalt

Umfang von Kreisen – Erklärung

Flächeninhalt von Kreisen – Erklärung

Kreise und die Kreiszahl Pi (π)

Kreisbogen – Einführung

Kreisausschnitt – Einführung

Tangente an einen Kreis konstruieren

Innere Tangenten an zwei Kreise – Konstruktion

Äußere Tangenten an zwei Kreisen – Konstruktion
Tangente an einen Kreis konstruieren Übung
-
Bestimme die korrekten Aussagen zu Kreistangenten.
TippsHier siehst du eine Kreistangente.
Das französische Verb „passer“ bedeutet „vorbeigehen“. Das Wort „Passante“ hat den gleichen Ursprung.
LösungDiese Aussagen sind wahr:
- Zwischen dem Radius und der Tangente eines Kreises liegt immer ein rechter Winkel.
- Eine Passante berührt den Kreis nicht.
Diese Aussagen sind falsch:
- Eine Tangente an einen Kreis berührt den Kreis in genau zwei Punkten.
- Eine Sekante berührt den Kreis in genau einem Punkt.
- Jede Tangente ist auch eine Sekante.
-
Gib wieder, wie man Tangenten an einen Kreis konstruiert.
TippsDie Tangente soll im rechten Winkel zum Radius des Kreises stehen. Deshalb muss zuerst der Radius eingezeichnet werden.
Um die Tangente zu konstruieren, muss man zwei Punkte auf dem verlängerten Radius finden, die den gleichen Abstand vom Berührpunkt haben.
Die Tangente ist dann die Mittelsenkrechte zwischen den Punkten auf dem verlängerten Radius.
LösungEine Tangente an einen Kreis kannst du wie folgt konstruieren:
- Zuerst verlängerst du den Radius des Kreises durch den Punkt, an dem die Tangente anliegen soll.
- Danach findest du zwei Punkte auf dem verlängerten Radius, die den gleichen Abstand vom Berührpunkt haben. Dazu zeichnest du zwei Kreissegmente mit gleichem Radius um den Berührpunkt, die den verlängerten Radius des ursprünglichen Kreises schneiden.
- Die Tangente ist dann die Mittelsenkrechte zwischen den Punkten auf dem verlängerten Radius. Diese Mittelsenkrechte erhältst du, indem du mit dem Zirkel jeweils zwei sich schneidende Kreissegmente mit gleichem Radius um die zwei gefundenen Punkte auf dem verlängerten Radius zeichnest.
- Durch die Schnittpunkte der beiden Kreissegmente zeichnest du eine Gerade. Das ist die gesuchte Tangente an den Kreis.
-
Erkläre, wie man Tangenten an einen Kreis durch einen Punkt außerhalb des Kreises konstruiert.
TippsUm eine Mittelsenkrechte zwischen zwei Punkten zu bestimmen, zeichnet man jeweils zwei sich schneidende Kreissegmente mit gleicher Radius um die beiden Punkte. Die Gerade durch die Schnittpunkte der Kreissegmente ist die Mittelsenkrechte.
Ein Kreis, der nur als Mittel zum Zweck gezeichnet wird, nennt man Hilfskreis.
LösungDie Konstruktion einer Tangenten durch einen Punkt außerhalb eines Kreises funktioniert folgendermaßen:
- Zuerst verlängert man den Radius durch den Punkt $P$. Dazu zeichnet man eine Gerade durch den Kreismittelpunkt $M$ und den Punkt $P$.
- Danach konstruiert man eine Mittelsenkrechte zwischen den Punkten $P$ und $M$. Dazu zeichnet man mit dem Zirkel jeweils zwei sich schneidende Kreissegmente mit gleichem Radius um die beiden Punkte und verbindet die Schnittpunkte.
- Im Anschluss wird der Mittelpunkt der Strecke zwischen $P$ und $M$ markiert. Danach zeichnet man einen Hilfskreis um diesen Mittelpunkt, der durch die Punkte $P$ und $M$ verläuft.
- Zuletzt zeichnet man Geraden durch den Punkt $P$ und die Schnittpunkte des ursprünglichen Kreises mit dem Hilfskreis. Das sind die Tangenten durch den Punkt $P$ außerhalb des Kreises.
-
Erkläre, wie man eine Tangente an einen Kreis konstruiert.
TippsSo sieht die Konstruktion direkt vor dem Einzeichnen der Tangente aus.
LösungDie Schritte für die Konstruktion einer Tangente an einem Kreis sind wie folgt:
- Zuerst verlängert man den Radius des Kreises durch den Punkt, an dem die Tangente anliegen soll.
- Dann findet man zwei Punkte auf dem verlängerten Radius, die den gleichen Abstand vom Berührpunkt haben.
- Im Anschluss zeichnet man mit dem Zirkel jeweils zwei sich schneidende Kreissegmente um die zwei gefundenen Punkte auf dem verlängerten Radius.
- Verbindet man die Schnittpunkte der Kreissegmente durch eine Gerade, dann hat man die Mittelsenkrechte dieser beiden Punkte gefunden.
- Diese Mittelsenkrechte ist die gesuchte Tangente.
-
Bestimme die Eigenschaften der Geraden an einem Kreis.
TippsSekanten und Passanten können in beliebiger Richtung zum Radius des Kreises stehen.
LösungDie erste Gerade heißt Tangente:
- Sie berührt den Kreis in einem Punkt.
- Sie liegt im rechten Winkel zum Radius des Kreises.
- Sie schneidet den Kreis nie.
- Sie schneidet den Kreis in zwei beliebigen Punkten.
-
Erschließe die Begründung für die Konstruktion der Tangenten.
TippsDer Satz des Thales macht Aussagen über rechtwinklige Dreiecke in Halbkreisen.
LösungDer Satz des Thales besagt, dass man aus den Endpunkten des Durchmessers eines Halbkreises und einem beliebigen weiteren Punkt $C$ auf diesem Halbkreis ein Dreieck bilden kann und dieses Dreieck bei $C$ immer einen rechten Winkel haben muss.
Bei der Konstruktion einer Tangenten an einen Punkt außerhalb des Kreises nutzt man den Satz des Thales: Man konstruiert einen Halbkreis mit den Punkten $P$ und $M$ als Endpunkte des Durchmessers.
In diesen Halbkreis kann man nun ein Dreieck aus den Punkten $P$, $M$ und einem beliebigen weiteren Punkt auf dem konstruierten Halbkreis zeichnen: Man wählt den Schnittpunkt $B$ des Halbkreises mit dem ursprünglichen Kreis, da hier die Tangente anliegen soll.
Die Strecke von $P$ zu $B$ des gewählten Dreiecks erfüllt jetzt zwei wichtige Bedingungen:
- Sie berührt den ursprünglichen Kreis in genau einem Punkt.
- Sie liegt im rechten Winkel zum Radius des ursprünglichen Kreises.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.211
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt