Kantenlänge eines Quaders bestimmen
Ein Quader besteht aus sechs rechteckigen Seitenflächen und insgesamt zwölf Kanten, von denen jeweils vier gleich lang sind. Um die Gesamtkantenlänge zu berechnen, müssen alle Kanten addiert werden. Im Text werden auch Beispiele zur Lösung von Problemen wie dem Bau eines Aquariums oder eines Drahtwürfels gegeben. Interessiert? All das und noch mehr findest du im folgenden Text!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Geometrische Grundkörper identifizieren

Würfel – Volumen und Oberfläche

Quader – Volumen und Oberfläche

Volumen von Körpern – Grundfläche und Höhe

Oberflächeninhalt eines Prismas berechnen

Volumen von Prismen berechnen

Volumen von zusammengesetzten Würfeln und Quadern

Quader – Begriffe und Eigenschaften

Kantenlänge eines Quaders bestimmen
Kantenlänge eines Quaders bestimmen Übung
-
Gib die passende Kantenlänge des Würfels an.
TippsEin Würfel hat genau zwölf gleich lange Kanten.
Die Formel für die Gesamtkantenlänge $l$ eines Würfels lautet $l=12a$.
Setze die Gesamtkantenlänge $l=120~cm$ in die Gleichung ein und löse sie nach $a$ auf.
LösungDie Formel für die Gesamtkantenlänge eines Quaders lautet $l=4\cdot(a+b+c)$. Nun brauchen wir die Formel für die Gesamtkantenlänge eines Würfels.
Er unterscheidet sich vom Quader, da er nicht jeweils vier, sondern genau zwölf gleich lange Kanten hat. Deshalb sieht die Formel für die Gesamtkantenlänge so aus:
$l=12a$
Die Länge des Drahtes ist bereits angegeben, wir können sie in die Formel einsetzen:
$120~cm=12a$
Wenn wir zum Schluss noch durch zwölf teilen, erhalten wir die gesuchte Kantenlänge $a$:
$a=120~cm : 12 = 10~cm$
Die Kantenlänge des gesuchten Würfels beträgt also $10~cm$.
-
Ergänze die Kantenlängen des Aquariums.
TippsBedenke, dass jede Kante viermal vorkommt.
Die Formel für die Gesamtkantenlänge $l$ für einen Quader lautet $l=4\cdot(a+b+c)$.
$a$, $b$ und $c$ müssen zusammen $120~cm$ ergeben.
LösungIn diesem Beispiel beträgt die Gesamtkantenlänge $4,80~m$ bzw. $480~cm$.
Die Formel für die Gesamtkantenlänge eines Quaders lautet:
$l = 4(a + b + c)$
Da wir die Gesamtkantenlänge $l=480~cm$ bereits kennen, können wir diese schon in die Formel einsetzen.
$480~cm = 4(a + b+ c)$
Wenn wir nun durch vier teilen, erhalten wir:
$120 ~cm= a + b + c$
Jetzt wissen wir, dass die Summe von $a$, $b$ und $c$ $120~cm$ betragen muss. Jetzt musst du nur noch die jeweils fehlende Länge ergänzen. Für unsere drei Beispiele bedeutet das:
$a=120~cm-40~cm-35~cm=45~cm$
$b=120~cm-50~cm-40~cm=30~cm$
$c=120~cm-55~cm-35~cm=30~cm$
-
Berechne die Kantenlänge des Würfels.
TippsWie viele Begrenzungsflächen hat ein Würfel? Wie nennt man diese Flächen?
Wie groß ist der Flächeninhalt einer Begrenzungsfläche?
LösungZunächst müssen wir herausfinden, wie groß eine einzelne Begrenzungsfläche des Würfels ist. Der Würfel besteht aus Quadraten.
Die Oberfläche eines Würfels besteht aus sechs Quadraten. Deswegen teilen wir den Oberflächeninhalt des Würfels durch sechs und erhalten so den Flächeninhalt einer Begrenzungsfläche:
$486 : 6=81~cm^2$
Das ist also der Flächeninhalt eines Quadrats. Da alle Würfelflächen Quadrate sind, erhalten wir eine Quadratseite und somit die Kantenlänge des Würfels durch Ziehen der Wurzel:
$a=\sqrt{81~cm^2}=9~cm$
Die Kantenlänge des Würfels beträgt also $9~cm$.
-
Bestimme die fehlende Kantenlänge des Aquariums.
TippsDu musst dich bei der Rechnung für eine Maßeinheit entscheiden. Also schreibe erst alle Angaben in der gleichen Einheit auf.
Überlege dir, wie viel Material Fidibus schon verplant hat und wie viel ihm danach noch übrig bleibt.
Die Formel für die Gesamtkantenlänge eines Quaders lautet $l=4\cdot (a+b+c)$.
LösungZuerst ist es wichtig, dass wir uns für eine Maßeinheit entscheiden, in der wir rechnen möchten. Da das Ergebnis in $cm$ angegeben werden soll, nehmen wir diese Einheit.
Wir rechnen um:
Länge: $a=8~dm=80~cm$
Breite: $b=200~mm=20~cm$
Insgesamt stehen ihm $l=5,60~m = 560~cm$ Material für den Rahmen, also die Gesamtkantenlänge des Quaders, zur Verfügung. Gesucht ist die Höhe $c$ des Quaders bzw. des Aquariums. Die Formel für die Gesamtkantenlänge eines Quaders lautet $l=4\cdot (a+b+c)$.
Wir setzen die bekannten Größen ein und erhalten:
$560~cm=4\cdot(80 ~cm+20~cm+c)$
Wir teilen durch vier und rechnen die Länge und Breite zusammen und erhalten:
$140~cm=100~cm+c$
Wir ziehen $100~cm$ auf beiden Seiten ab und erhalten das Ergebnis:
$c=40~cm$.
Die Höhe des Aquariums beträgt also $40~cm$.
-
Ordne die Formeln dem richtigen Körper zu.
TippsDenk an das Kantenmodell eines Quaders. Es gibt immer eine Länge, eine Breite und eine Höhe.
Bei einem Quader kommen alle drei Kantenlängen viermal vor. Was ist das Spezielle bei einem Würfel?
LösungJeder Quader besitzt 12 Kanten. Vier Kanten entsprechen der Länge, vier Kanten der Breite und vier Kanten der Höhe.
Da man sie mit a, b und c bezeichnet und jede dieser Längen viermal vorkommt, ergibt sich die Formel für die Gesamtkantenlänge $l$ eines Quaders:
$l = 4a + 4b +4c$
Wenn du die 4 ausklammerst, ergibt sich diese Formel:
$l = 4(a + b + c)$
Da bei einem Würfel alle Kanten gleich lang sind, also $a = b = c$ gilt, kommt diese eine Kantenlänge insgesamt zwölfmal vor. Also erhalten wir die Formel für die Gesamtkantenlänge eines Würfels:
$l = 4(a + a + a) = 4 \cdot 3a = 12a$
-
Ermittle die gesuchten Kantenlängen der Würfel.
TippsAus wie vielen Flächen besteht ein Würfel?
Teile den Oberflächeninhalt auf alle Flächen des Würfels auf. Dann musst du nur noch überlegen, welche Kantenlänge zu dem berechneten Flächeninhalt einer Würfelfläche gehört.
Die Formel für den Oberflächeninhalt lautet: $O=6 \cdot a^2$
LösungBeginnen wir mit dem einfachsten dieser vier Würfel, um das Prinzip zu verstehen.
Ein Würfel soll den Oberflächeninhalt $6~cm^2$ besitzen.
Jeder Würfel besteht aus sechs gleich großen Quadraten. Das heißt, eine dieser Flächen hat dann einen Flächeninhalt von $1~cm^2$. Nun hast du also ein Quadrat mit dem Flächeninhalt $1~cm^2$.
Die Formel für den Flächeninhalt eines Quadrats lautet:
$A=a\cdot a=a^2$
Wenn wir sie ein bisschen umstellen und die gegebene Zahl einsetzen erhalten wir:
$a^2=1~cm^2$ also ist $a=1~cm$ – Wir ziehen hier die Wurzel, beziehungsweise überlegen, welche Zahl mit sich selbst multipliziert den angegebenen Flächeninhalt ergibt.
Nun die übrigen Würfel:
$54~cm^2 : 6=9~cm^2$, also $a^2=9~cm^2$ bzw. $a=3~cm$
$150~cm^2 : 6=25~cm^2$, also $a^2=25~cm^2$ bzw. $a=5~cm$
$24~cm^2 : 6=4~cm^2$, also $a^2=4~cm^2$ bzw. $a=2~cm$
9.385
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.226
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt