Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

ggT und kgV in der Bruchrechnung

Erfahre, wie der größte gemeinsame Teiler und das kleinste gemeinsame Vielfache deine Bruchrechnung erleichtern können. Verkürze den Kürzungsprozess mit dem ggT und vereinfache Addition und Subtraktion mit dem kgV. Interessiert? Entdecke jetzt die Welt der Bruchrechnung mit unseren Erklärungen und Übungen!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema ggT und kgV in der Bruchrechnung

Was ist der größte gemeinsame Teiler (ggT)?

1/5
Bewertung

Ø 3.6 / 188 Bewertungen
Die Autor*innen
Avatar
Team Digital
ggT und kgV in der Bruchrechnung
lernst du in der 5. Klasse - 6. Klasse

ggT und kgV in der Bruchrechnung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video ggT und kgV in der Bruchrechnung kannst du es wiederholen und üben.
  • Tipps

    Zwei Antworten sind korrekt.

    Beispiel:

    $\dfrac{12}{16} = \dfrac{12:4}{16:4} = \dfrac{3}{4}$

    • $\text{ggT}$: größter gemeinsamer Teiler ($\Rightarrow$ kürzen)
    • $\text{kgV}$: kleinstes gemeinsames Vielfaches ($\Rightarrow$ Hauptnenner)
    Lösung

    Die Abkürzung $\text{kgV}$ steht für das kleinste gemeinsame Vielfache,
    die Abkürzung $\text{ggT}$ für den größten gemeinsamen Teiler.

    Das $\text{kgV}$ und der $\text{ggT}$ helfen uns in der Bruchrechnung.

    Beim Addieren und Subtrahieren von Brüchen verwenden wir das $\text{kgV}$.

    Beispiel: $\frac{3}{4} + \frac{ 2}{3} \qquad \text{kgV}(3,4)=12$

    Das heißt:

    $\frac{3}{4} + \frac{ 2}{3} = \frac{9}{12} + \frac{8}{12}= \frac{17}{12}$

    Um zwei oder mehr Brüche zu addieren oder zu subtrahieren, müssen wir sie auf einen gemeinsamen Nenner bringen: den Hauptnenner. Der Hauptnenner ist das $\text{kgV}$ der Nenner.

    Demnach ist folgende Aussage richtig:
    Als Hauptnenner bei der Addition kann das $\textbf{kgV}$ der Nenner der Brüche genutzt werden. Diese Aussage ist hingegen falsch:
    Als Hauptzähler bei der Addition kann der $\textbf{ggT}$ der Zähler der Brüche genutzt werden.

    Beim Kürzen von Brüchen verwenden wir den $\text{ggT}$.

    Beispiel: $\frac{12}{16} \qquad \text{ggT}(12,16)=4$

    Das heißt:

    $\frac{12}{16} = \frac{12:4}{16:4} = \frac{3}{4}$

    Daher ist diese Aussage richtig:
    Ein Bruch kann mit dem $\textbf{ggT}$ von Zähler und Nenner gekürzt werden.

    Diese Aussage ist falsch:
    Ist das $\textbf{kgV}$ von Zähler und Nenner $1$, so ist der Bruch vollständig gekürzt.

  • Tipps

    Bestimme zuerst das $\text{kgV}$ der Nenner. Es gibt dir den Hauptnenner an.

    Beispiel:

    $\frac{1}{20} + \frac{5}{6}$

    $\text{kgV}(6; 20) = 60$ $\frac{1}{20} + \frac{5}{6} = \frac{3}{60} + \frac{50}{60} = \frac{3+50}{60} = \frac{53}{60}$

    Lösung

    Um mehrere Brüche zu addieren oder zu subtrahieren, müssen wir diese zuerst auf einen gemeinsamen Hauptnenner bringen. Der Hauptnenner ist das kleinste gemeinsame Vielfache (kgV) der Nenner der beiden Brüche. Anschließend behalten wir den Hauptnenner bei und addieren bzw. subtrahieren die Zähler:

    Beispiel 1:

    $\frac{1}{2} + \frac{1}{3}$
    $\text{kgV}(2;3) = 6$
    $\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}$

    Beispiel 2:

    $\frac{7}{8} - \frac{5}{12}$
    $\text{kgV}(8; 12) = 24$
    $\frac{7}{8} - \frac{5}{12} = \frac{21}{24} - \frac{10}{24} = \frac{11}{24}$

    Beispiel 3:

    $\frac{1}{6} + \frac{3}{8}$
    $\text{kgV}(6; 8) = 24$
    $\frac{1}{6} + \frac{3}{8} = \frac{4}{24} + \frac{9}{24} = \frac{13}{24}$

  • Tipps

    Um den Bruch möglichst geschickt in einem Schritt zu kürzen, kannst du den $\text{ggT}$ von Zähler und Nenner bestimmen. Dieser gibt dir die Kürzungszahl an: Du dividierst Zähler und Nenner durch diese Zahl.

    Beispiel:

    $\frac{16}{24}$
    $\text{ggT}(16; 24) =8$
    $\frac{16}{24} = \frac{2}{3}$

    Lösung

    Der $\text{ggT}$ ist der größte gemeinsame Teiler. Das ist die größte Zahl, die in beiden Teilermengen vorkommt.

    Der $\text{ggT}$ hilft uns beim geschickten Kürzen von Brüchen. Der $\text{ggT}$ von Zähler und Nenner ist die Kürzungszahl, also die Zahl, durch die wir Zähler und Nenner dividieren müssen, um den Bruch vollständig zu kürzen.

    Beispiel 1:

    $\frac{12}{30}$
    $\text{ggT}(12; 30) =6$
    $\frac{12}{30} = \frac{12:6}{30:6} = \frac{2}{5}$

    Beispiel 2:

    $\frac{12}{16}$
    $\text{ggT}(18; 24) =4$
    $\frac{12}{16} = \frac{12:4}{16:4} = \frac{3}{4}$

    Beispiel 3:

    $\frac{78}{108}$
    $\text{ggT}(78; 108) =6$
    $\frac{78}{108} = \frac{78:6}{108:6} =\frac{13}{18}$

    Beispiel 4:

    $\frac{42}{91}$
    $\text{ggT}(42; 91) =7$
    $\frac{42}{91} = \frac{42:7}{91:7} = \frac{6}{13}$

  • Tipps

    Überprüfe, ob richtig gekürzt wurde: Zähler und Nenner müssen durch die gleiche Zahl dividiert werden. Die Kürzungszahl ist der $\text{ggT}$ von Zähler und Nenner.

    Beim Addieren und Subtrahieren hilft uns das $\text{kgV}$. Wenn wir das $\text{kgV}$ der Nenner bilden, erhalten wir den Hauptnenner.

    Lösung

    Beim Kürzen von Brüchen verwenden wir den größten gemeinsamen Teiler (ggT):
    Der $\text{ggT}$ von Zähler und Nenner gibt die Kürzungszahl beim Kürzen an.

    Wir überprüfen die Beispiele:

    • $\frac{20}{45} = \frac{20:5}{45:5} =\frac{4}{9}$
    Das ist richtig, denn $\text{ggT}(20; 45) =5$.
    • $\frac{12}{84} =\frac{1}{8}$
    Das ist falsch, denn $\text{ggT}(12, 84) =12$, also $\frac{12}{84} = \frac{12:12}{84:12} =\frac{1}{7}$.

    Beim Addieren und Subtrahieren von Brüchen verwenden wir das kleinste gemeinsame Vielfache (kgV):
    Um zwei oder mehr Brüche zu addieren oder zu subtrahieren, müssen wir sie auf einen gemeinsamen Nenner bringen: den Hauptnenner. Der Hauptnenner ist das $\text{kgV}$ der Nenner.

    Wir überprüfen die Beispiele:

    • $\frac{1}{5} + \frac{2}{9} = \frac{1+2}{5+9} = \frac{3}{14}$
    Das ist falsch, denn $\text{kgV}(5; 9) = 45$. Es ergibt sich also:
    $\frac{1}{5} + \frac{2}{9} = \frac{9}{45} + \frac{10}{45} =\frac{9+10}{45} = \frac{19}{45}$
    • $\frac{1}{6} - \frac{1}{15} = \frac{5}{30} - \frac{2}{30}= \frac{3}{30} = \frac{1}{10}$
    Das ist richtig, denn $\text{kgV}(6; 15) = 30$.

    Und hier noch eine geschickte Addition durch Kürzen der Brüche:

    • $\frac{21}{28} + \frac{1}{4} + \frac{6}{24} = \frac{3}{4} + \frac{1}{4} + \frac{1}{4} = \frac{5}{4}$
    Das ist richtig, denn $\text{ggT}(21; 28) =7$. Der Bruch $\frac{21}{28}$ wurde also mit $7$ gekürzt.
    Bei $\text{ggT}(6; 24) =6$ wurde der Bruch $\frac{6}{24}$ mit $6$ gekürzt.
    Dadurch haben alle drei Brüche den Hauptnenner $4$ und können addiert werden.

  • Tipps

    Das $\text{kgV}$ ist das kleinste gemeinsame Vielfache. Es ist die kleinste Zahl, die ein Vielfaches der Zahlen ist.

    Um das $\text{kgV}$ von zwei oder mehr Zahlen zu bestimmen, zerlegen wir die Zahlen in ihre Primfaktoren. Das $\text{kgV}$ ist dann das Produkt aller Primfaktoren (diejenigen, die bei beiden Zahlen als Faktoren vorkommen, werden jeweils nur einmal, nicht doppelt hinzugenommen).

    Der $\text{ggT}$ ist der größte gemeinsame Teiler.

    Um das $\text{ggT}$ zu bestimmen, notieren wir die Teilermengen der Zahlen. Der $\text{ggT}$ ist dann die größte Zahl, die in beiden Teilermengen vorkommt.

    Lösung

    Das $\text{kgV}$ ist das kleinste gemeinsame Vielfache.

    Um das $\text{kgV}$ von zwei oder mehr Zahlen zu bestimmen, zerlegen wir die Zahlen in ihre Primfaktoren. Das $\text{kgV}$ ist dann das Produkt der auftretenden Primfaktoren in ihrer höchsten Anzahl.

    Wir bestimmen:

    $4=2 \cdot 2$
    $6 = 2 \cdot 3$
    $\text{kgV} (4; 6) = 2 \cdot 2 \cdot 3 = 6$

    $15=3 \cdot 5$
    $21= 3 \cdot 7$
    $\text{kgV} (15; 21) =3 \cdot 5 \cdot 7=105$

    $4=2 \cdot2$
    $10= 2\cdot 5$
    $\text{kgV} (4; 10) =2 \cdot 2 \cdot 5 \cdot 7=20$

    Der $\text{ggT}$ ist der größte gemeinsame Teiler.

    Um das $\text{ggT}$ zu bestimmen, notieren wir die Teilermengen der Zahlen. Der $\text{ggT}$ ist dann die größte Zahl, die in beiden Teilermengen vorkommt.

    Wir bestimmen:

    $T_{25} = \lbrace 1; 5; 25 \rbrace$
    $T_{30} = \lbrace 1; 2; 3; 5; 6; 10; 15; 30 \rbrace$
    $\text{ggT}(25; 30)= 5$

    $T_{8} = \lbrace 1; 2; 4; 8 \rbrace$
    $T_{12} = \lbrace 1; 2; 3; 4; 6; 12 \rbrace$
    $\text{ggT}(25; 30)= 4$

  • Tipps

    Bilde das $\text{kgV}$ der Nenner. Dies ist der Hauptnenner.

    Um das $\text{kgV}$ von zwei oder mehr Zahlen zu bestimmen, zerlegen wir die Zahlen in ihre Primfaktoren. Das $\text{kgV}$ ist dann das Produkt der auftretenden Primfaktoren in ihrer höchsten Anzahl.

    Lösung

    Um mehrere Brüche zu addieren oder zu subtrahieren, müssen wir diese zuerst auf einen gemeinsamen Hauptnenner bringen. Der Hauptnenner ist das kleinste gemeinsame Vielfache (kgV) der Nenner der Brüche. Anschließend behalten wir den Hauptnenner bei und addieren bzw. subtrahieren die Zähler:

    Beispiel 1:

    $\frac{1}{6} + \frac{2}{3} - \frac{1}{9}$
    $\text{kgV}(3; 6; 9) =18$
    $\frac{1}{6} + \frac{2}{3} - \frac{1}{9} = \frac{3}{18} + \frac{12}{18} - \frac{2}{18} = \frac{3+12-2}{18} = \frac{13}{18}$

    Beispiel 2:

    $\frac{3}{5} + \frac{1}{4} + \frac{7}{10}$
    $\text{kgV}(4; 5; 10) =20$
    $\frac{3}{5} + \frac{1}{4} + \frac{7}{10} = \frac{12}{20} + \frac{5}{20} + \frac{14}{20} = \frac{12+5+14}{20} = \frac{31}{20}$

    Beispiel 3:

    $\frac{1}{20} + \frac{5}{6}$
    $\text{kgV}(6; 20) =60$
    $\frac{1}{20} + \frac{5}{6} = \frac{3}{60} + \frac{50}{60}= \frac{3+50}{60} = \frac{53}{60}$

    Beispiel 4:

    $\frac{7}{12} - \frac{1}{3} - \frac{1}{10}$
    $\text{kgV}(3; 10; 12) =60$
    $\frac{7}{12} - \frac{1}{3} - \frac{1}{10} = \frac{35}{60} - \frac{20}{60} - \frac{6}{60} = \frac{35-20-6}{60} = \frac{9}{60}= \frac{3}{20}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden