Der Satz des Pythagoras
Erfahre alles über den berühmten Satz des Pythagoras, der in rechtwinkligen Dreiecken gilt. Lerne die Bedeutung von Hypotenuse und Katheten sowie die Formel $a2 + b2 = c2$. Berechne fehlende Seitenlängen und entdecke pythagoreische Tripel. Interessiert? Dies und mehr im folgenden Text!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Der Satz des Pythagoras Übung
-
Ergänze die Seiten und Flächeninhalte.
TippsDie kürzeste Seite eines rechtwinkligen Dreiecks heißt Kathete.
Die Fläche eines Quadrates mit der Kantenlänge $x$ ist $x^2$.
Der Flächeninhalt des Quadrates über der Hypotenuse entspricht der Summe der Flächeninhalte der Quadrate über den Katheten.
LösungDer Satz des Pythagoras drückt den Flächeninhalt des Quadrates über der Hypotenuse eines rechtwinkligen Dreiecks durch den Flächeninhalt der Quadrate über den Katheten aus. Üblicherweise werden die Katheten mit $a$ und $b$ bezeichnet und die Hypotenuse mit $c$. Der Flächeninhalt eines Quadrates mit Kantenlänge $x$ ist $x^2$. Somit haben die Quadrate über den Katheten die Flächeninhalte $a^2$ bzw. $b^2$, das Quadrat über der Hypotenuse den Flächeninhalt $c^2$. Der Satz des Pythagoras ist die folgende Formel für die Flächeninhalte:
$a^2+b^2=c^2$
-
Bestimme die Seitenlängen und Flächeninhalte.
Tipps$c$ ist die längste der drei Seiten und somit die Hypotenuse des abgebildeten rechtwinkligen Dreiecks.
Berechne das Quadrat der Seitenlängen $a$ und $b$.
Hier ist eine Beispielrechnung: In dem rechtwinkligen Dreieck mit den Katheten $a = 5~\text{cm}$ und $b = 12~\text{cm}$ gilt:
$c = \sqrt{(5~\text{cm})^2+(12~\text{cm})^2} = \sqrt{25~\text{cm}^2+144~\text{cm}^2} = \sqrt{169~\text{cm}^2} = 13~\text{cm}$
LösungMit dem Satz des Pythagoras kannst du die Länge der Hypotenuse aus den Längen beider Katheten ausrechnen. Heißen die Katheten $a$ und $b$ und die Hypotenuse $c$, so gilt:
- $a^2+b^2=c^2$
Setzt du $a=16~\text{m}$ und $b=63~\text{m}$ in den Term $a^2+b^2$ ein, so ergibt sich:
- $c^2 = (16~\text{m})^2 + (63~\text{m})^2= 256~\text{m}^2+3.969~\text{m}^2=4.225~\text{m}^2$
- $c=\sqrt{4. 225~\text{m}^2} = 65~\text{m}$
-
Ermittle die Längen der Hypotenusen.
TippsSetze die Werte von $a$ und $b$ ein und berechne die Quadrate $a^2$ und $b^2$.
Die Hypotenuse ist die Wurzel aus der Summe der Quadrate der Katheten, d.h. $c = \sqrt{a^2+b^2}$.
Hier ist eine Beispielrechnung: Mit $a= 12$ und $b=5$ ist $a^2 = 144$ und $b=25$. Daher ist $c = \sqrt{a^2+b^2} = \sqrt{144+25} = \sqrt{169} = 13$.
LösungDu kannst die Werte für die Katheten $a$ und $b$ in die Quadrate einsetzen und so die Flächeninhalte der Kathetenquadrate bestimmen. Dann addierst du diese und erhältst den Flächeninhalt des Hypotenusenquadrats. Ziehst du daraus die Wurzel, so erhältst du die Länge der Hypotenuse:
- Mit den Katheten $a=7$ und $b=24$ erhältst du die Kathetenquadrate $a^2 =7^2 = 49$ und $b^2= 24^2=576$. Das Hypotenusenquadrat ist dann $c^2 = a^2+b^2 = 49+576 = 625$. Die Hypotenuse ist schließlich $c=\sqrt{a^2+b^2}= \sqrt{625} =25$.
- Die Quadrate der Katheten $a=8$ und $b=15$ sind $a^2 = 8^2=64$ und $b^2=15^2=225$. Das zugehörige Quadrat der Hypotenuse ist dann $c^2= 64+225 = 289$. Die Hypotenuse hat daher die Länge $c=\sqrt{289} = 17$.
- Zu den Katheten $a=21$ und $b=20$ gehören die Quadrate $a^2=21^2=441$ und $b^2=20^2=400$. Die Hypotenuse hat dann die Länge $c = \sqrt{400+441} =29$.
-
Setze die Katheten mit den Hypotenusen in Beziehung.
TippsDie Hypotenuse ist stets länger als beide Katheten.
Zu einer ganzzahligen und einer nicht ganzzahligen Kathete passt keine ganzzahlige Hypotenuse.
LösungDer Satz des Pythagoras lautet für ein rechtwinkliges Dreieck mit den Katheten $a$ und $b$ und der Hypotenuse $c$ wie folgt:
$a^2+b^2 = c^2$
Du kannst die Formel benutzen, um aus je zwei gegebenen Seiten die dritte auszurechnen.
In dieser Aufgabe ist aber jeweils nur eine Seite vorgegeben und die beiden anderen dazu passenden gesucht. Auch dafür kannst du den Satz des Pythagoras verwenden. Um nicht alle Möglichkeiten einzeln durchprobieren zu müssen, kannst du zusätzlich Folgendes verwenden: Die Hypotenuse $c$ ist stets die längste Seite des rechtwinkligen Dreiecks. Die Kathete $b=12$ kann daher zu keiner anderen Hypotenuse als $c=13$ gehören. Außerdem ist die Hypotenuse kürzer als die Summe der Katheten, sonst würde sich das Dreieck nicht schließen. Zu der Hypotenuse $c=13$ und der Kathete $b=12$ passt also nicht die Kathete $a=0,8$, denn für diese ist $a+b = 12,8 < 13$. Ferner ist das Quadrat einer Kommazahl wieder eine Kommazahl. Sind also zwei der drei Längen eines Dreiecks ganzzahlig, so kann die dritte Länge keine Kommazahl sein: Zu der Hypotenuse $c=13$ und der Kathete $b=12$ passt also nicht die Kathete $a=2,4$, denn sonst wäre $a^2 + b^2$ eine Kommazahl, aber $c^2$ ist keine Kommazahl.
So findest du folgende Zuordnungen:
$c=5$:
- $a=3$
- $b=4$
- Für diese Werte ist $a^2+b^2 = 9+16 = 25 = c^2$.
- $a=5$
- $b=12$
- Hier ist $a^2 + b^2 = 25+144 = 169 = c^2$.
- $a=2,4$
- $b=3,2$
- Diese Werte ergeben $a^2 + b^2 = 5,76+10,24 = 16 = c^2$.
- $a=0,8$
- $b=0,6$
- Hier ergibt sich $a^2 + b^2 = 0,64 + 036 = 1 = c^2$.
-
Zeige die geometrischen Größen.
TippsDer größte Winkel liegt der längsten Seite gegenüber.
In einem rechtwinkligen Dreieck ist der rechte Winkel der größte der drei Winkel.
Die am rechten Winkel anliegenden Seiten heißen Katheten.
LösungIn einem rechtwinkligen Dreieck gibt es jeweils einen speziellen Winkel und eine spezielle Seite: Der rechte Winkel ist stets der größte Winkel im rechtwinkligen Dreieck und hat die Winkelgröße $90^\circ$. Die beiden anderen Winkel sind spitze Winkel, d. h. sie haben eine Winkelgröße $< 90^\circ$.
Die Seite gegenüber dem rechten Winkel heißt Hypotenuse, die beiden anderen Seiten sind die Katheten.
-
Prüfe die Formeln.
TippsDer Satz des Pythagoras gilt nur in rechtwinkligen Dreiecken.
LösungDer Satz des Pythagoras gilt in rechtwinkligen Dreiecken. Für jedes nicht-rechtwinklige Dreieck ist die Formel aus dem Satz des Pythagoras falsch.
Folgende Bilder sind richtig beschriftet:
2. Das Dreieck ist rechtwinklig mit den Katheten $x$ und $y$ und der Hypotenuse $z$.
4. Das Dreieck ist rechtwinklig mit den Katheten $a$ und $b$ und der Hypotenuse $c$. Du kannst die Formel $a^2+b^2=c^2$ nach $b^2$ auflösen und die Wurzel ziehen.
6. Das Bild zeigt eine geometrische Beweisidee für den Satz des Pythagoras: Die vier Dreiecke sind kongruent, du kannst jedes der vier benutzen, um die Formel zu überprüfen. Das Quadrat in der Mitte hat die Fläche $c^2$. Das äußere Quadrat hat die Fläche $(a+b)^2$. Jedes der Dreiecke hat die Fläche $\frac{1}{2} ab$, zusammen haben die vier Dreiecke also die Fläche $4 \cdot \frac{1}{2} ab = 2ab$. Die Fläche des großen Quadrates abzüglich der Dreiecke ist daher $(a+b)^2 - 2ab = (a^2+2ab+b^2) -2ab = a^2+b^2$. Andererseits ist diese Fläche genau das innere Quadrat, also $c^2$.
Folgende Bilder sind falsch beschriftet:
1. Das Dreieck ist nicht rechtwinklig, daher gilt der Satz des Pythagoras in diesem Dreieck nicht.
3. Das Dreieck ist rechtwinklig und gleichschenklig. Daher ist $a=b$ und daher $c = \sqrt{a^2+a^2} = \sqrt{2a^2} = \sqrt{2}a \neq 2a$.
5. Die Diagonale $d$ des Rechtecks ist die Hypotenuse des rechtwinkligen Dreiecks mit den Katheten $a$ und $b$. Daher ist nach dem Satz des Pythagoras $d^2=a^2+b^2\neq (a+b)^2$.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.214
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt