Eulerscher Polyedersatz
Der Eulersche Polyedersatz wird erklärt, inklusive der Definition von Polyedern und Anwendungsbeispielen an Platonischen Körpern. Interessiert? Weitere Details und Übungen zu diesem Satz findest du im vollständigen Text.

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Eulerscher Polyedersatz Übung
-
Nenne den Eulerschen Polyedersatz.
TippsSchau dir einen Würfel an.
- Zähle die Ecken,
- die Flächen und
- die Kanten.
Beim Würfel ist $e=8$, $f=6$ und $k=12$.
Hast du einen Karton, zum Beispiel einen Müslikarton, zur Hand? Zähle die Ecken, die Flächen und die Kanten.
LösungDer Eulersche Polyedersatz besagt, dass
- $e+f-k=2$ oder äquivalent dazu
- $e+f=k+2$ gilt,
- $e$ die Anzahl der Ecken,
- $f$ die Anzahl der Flächen und
- $k$ die Anzahl der Kanten des Polyeders sind.
-
Weise den Eulerschen Polyedersatz bei verschieden Körpern nach.
TippsDer Eulersche Polyedersatz besagt, dass bei jedem Polyeder die Summer der Ecken- und Flächenzahl reduziert um die Kantenzahl immer $2$ sein muss.
Übertrage die Schrägbilder in dein Heft und markiere die bereits gezählten Ecken, Flächen oder Kanten.
LösungDies sind zwei Beispiele zum Eulerschen Polyedersatz, welcher besagt, dass in einem beliebigen Polyeder die Summe der Ecken- und Flächenzahl verringert um die Kantenzahl immer gleich ist, nämlich $2$.
1. Prisma mit sechseckiger Grundfläche:
- die Grund- und Deckfläche haben jeweils sechs Ecken, also insgesamt $e=12$,
- Grund- und Deckfläche sind zwei Flächen, hinzu kommen sechs Seitenflächen, das sind gesamt $k=8$ und
- sowohl die Grund- als auch Deckfläche haben sechs Kanten, zwischen jeweils zwei Seitenflächen liegt eine Kante, also auch wieder sechs. Somit ist $k=18$.
- Es gilt $e+f-k=12+8-18=2$ $\surd$.
- die Grundfläche hat vier Ecken, dazu kommt die Spitze, also insgesamt $e=5$,
- eine Grundfläche und vier Seitenflächen sind insgesamt $k=5$ und
- die Grundfläche hat vier Kanten, zwischen jeweils zwei Seitenflächen liegt eine Kante, also auch wieder vier. Somit ist $k=8$.
- Es gilt $e+f-k=5+5-8=2$ $\surd$.
-
Berechne die fehlende Anzahl an Kanten, Flächen oder Ecken.
TippsDu kannst den Eulerschen Polyedersatz nach jeder der drei Größen umstellen.
Der Eulersche Polyedersatz besagt, dass $e+f-k=2$ gilt, wobei $e$ die Anzahl der Ecken, $f$ die Anzahl der Flächen und $k$ die Anzahl der Kanten sind.
LösungManches Mal kann es einfacher sein,
- die Ecken und Kanten oder
- die Ecken und Flächen oder
- die Flächen und Kanten zu zählen.
Es gilt: $e+f-k=2$. Dies ist äquivalent zu
- $e=k-f+2$ oder
- $f=k-e+2$ oder
- $k=e+f-2$.
- Ein Polyeder mit $5$ Flächen und $9$ Ecken muss demnach $k=9+5-2=12$ Kanten haben. Ein Beispiel für ein solches Polyeder ist ein Prisma mit dreieckiger Grundfläche.
- Ein Polyeder mit $12$ Kanten und $6$ Flächen muss $f=12-6+2=8$ Ecken haben. Ein Beispiel hierfür wäre ein Quader oder ein Würfel.
- Ein Polyeder mit $4$ Ecken und $4$ Flächen muss $k=4+4-2=6$ Kanten haben. Ein Beispiel hierfür ist das Tetraeder, welches in dem Bild zu sehen ist.
- Ein Polyeder mit $10$ Ecken und $15$ Kanten hat $f=15-10+2=7$ Flächen. Ein Beispiel hierfür ist ein Prisma mit fünfeckiger Grundfläche.
-
Weise den Eulerschen Polyedersatz an dem zusammengesetzten Polyeder nach.
TippsDu könntest auch nur die Ecken und Flächen zählen und die Anzahl der Flächen mit dem Eulerschen Polyedersatz bestimmen.
Es gilt $e+f-k=2$.
Zähle die Ecken von unten nach oben:
- Wie viele Ecken hat die Grundfläche?
- Pyramidenstumpf und
- Pyramide.
Die Deckfläche des Pyramidenstumpfs, die gleichzeitig Grundfläche der oberen Pyramide ist, ist keine Fläche des Körpers.
LösungNach dem Eulerschen Polyedersatz gilt
$e+f-k=2$ oder $e+f=k+2$.
Bei diesem Polyeder ist
- die Anzahl der Ecken $e=9$,
- die Anzahl der Flächen $f=9$ und
- die der Kanten $k=16$.
$e+f-k=9+9-16=2$ $\surd$.
-
Bestimme die Polyeder.
TippsPolyeder werden auch Vielflächner genannt.
Beim Polyeder sind alle begrenzenden Flächen eben und nicht gekrümmt.
LösungDer Name des Polyeders kommt aus dem Griechischen für Vielfläche. Es handelt sich also um einen geometrischen Körper, welcher nur von ebenen Flächen und nicht von gekrümmten Flächen begrenzt wird.
Dies ist bei dem Würfel, der Pyramide und dem Prisma der Fall, allerdings nicht bei einem Kegel oder einem Zylinder.
-
Bestimme die Anzahl der Flächen, Kanten und Ecken dem zusammengesetzten Körper.
TippsMach dir eine dreidimensionale Skizze und zähle alle (!) Ecken und Flächen. Die Kanten sind schwierig zu erkennen.
Verwende den Eulerschen Polyedersatz, nachdem du die Ecken und Flächen gezählt hast $e+f-k=2$.
Eine Pyramide hat fünf Ecken und besteht aus fünf Flächen. Ein Quader hat acht Ecken und besteht aus sechs Flächen. Die Denkfläche des Quaders ist geteilt und besteht aus drei Flächen.
LösungMan kann den Eulerschen Polyedersatz verwenden. Hierfür kann man die Ecken und Flächen zählen, falls dies einfacher zu sein scheint als das Zählen der Kanten:
Ecken:
- jede Pyramide hat $5$ Ecken, das sind gesamt $10$ Ecken,
- der Quader hat $8$ Ecken.
- Da die Pyramiden und der Quader keine gemeinsamen Ecken haben, gilt $e=10+8=18$.
- Quader: Die Grundfläche und die Seitenflächen sind zusammen fünf Flächen. Die Deckfläche mit den Pyramiden ist etwas kniffliger.
- Pyramide: Eine Pyramide besteht aus vier Seitenflächen. Damit sind es zusammen acht.
- Die Deckfläche ist durch die zwei Pyramiden in drei Flächen unterteilt worden.
- Zusammen ergibt das dann $f=5+8+3=16$ Flächen.
$e+f=k+2$:
$\begin{align*} 18+16&=k+2&|&-2\\ 32&=k. \end{align*}$
Wir erhalten also insgesamt $e=18$, $f=16$ und $k=32$.
Du kannst du die Kanten auch zählen. Das ist möglich, aber auch schwieriger als die erste Methode.
Kanten:
- Jede Pyramide hat $8$ Kanten. Hinzu kommen
- die $4$ Kanten der Grundfläche und $4$ der Seitenflächen des Quaders. Die Deckfläche ist etwas komplizierter: dort befinden sich zusätzlich zu den Kanten der Pyramiden noch $8$ Kanten.
- Gesamt sind dies: $k=16+16=32$.
9.244
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.150
Lernvideos
38.631
Übungen
33.454
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen