Eulerscher Polyedersatz
Eulerscher Polyedersatz
Beschreibung Eulerscher Polyedersatz
Hallo! In diesem Video lernst du den Eulerschen Polyedersatz kennen. Du erfährst, dass er etwas mit der Oberflächengestalt der Polyeder zu tun hat. Es spielen Flächen, Ecken und Kanten der Polyeder eine Rolle. Dabei wirst du sehen, dass die jeweiligen Anzahlen wichtig sind. Viel Spaß.
Transkript Eulerscher Polyedersatz
Hallo! Wir wollen uns heute mit dem Eulerschen Polyedersatz beschäftigen. Was hinter diesem Satz steckt und was der mit geometrischen Körpern zu tun hat, das sollst du in diesem Video erfahren. Du solltest dazu Kenntnisse über geometrische Körper und Eigenschaften ihrer Oberfläche haben. Wir lernen heute, was ein Polyeder ist, wie ein Polyeder zu beschreiben ist, wie der Eulersche Polyedersatz lautet und Beispiele dazu kennen. Geometrische Körper kennst du sicher. Hier zeige ich dir einige Beispiele für solche Körper: ein Würfel, eine Pyramide, ein Kegel, ein Zylinder und hier zwei Prismen. Wir sehen ganz unterschiedliche Körper. Alle Körper werden durch Flächen begrenzt. Wir unterscheiden dabei Körper mit ebenen Flächen, wie Würfel, Pyramiden und Prismen, und solche mit gekrümmten Flächen, wie Kegel und Zylinder. Die Mathematiker haben nun für die Körper, die nur von ebenen Flächen begrenzt werden, den Begriff „Polyeder‟ oder den etwas sperrigen Begriff „Vielflächner‟ eingeführt. Beispiele für Polyeder sind also Würfel, Pyramide und Prisma. Bei den Polyedern fällt dir sicher auf, dass sie unterschiedliche Anzahlen von Ecken, Kanten und Flächen haben. Schauen wir uns einmal dieses Prisma an: Es hat unten drei und oben drei Ecken, also e=6 Ecken. Dann zählen wir die Flächen: unten eine, oben eine und der Rand wird aus drei Flächen gebildet. Insgesamt haben wir f=5 Flächen. Und für die Kanten gilt: k=9 Kanten. Du kannst sie nachzählen. Und nun rechnen wir mal Ecken e plus Flächen f minus Kanten k und erhalten 6+5-9=2. Nun machen wir dasselbe bei dem anderen Prisma. Wir zählen oben sechs Ecken und unten sechs Ecken, macht zusammen e=12 Ecken. Dann zählen wir als Randflächen sechs und Grund- und Deckfläche je eins, ergibt zusammen acht Flächen. Und nun brauchen wir noch die Kanten. Oben sechs, unten sechs und am Rand ebenfalls sechs, macht zusammen k=18. Nun rechnen wir wieder e+f-k=12+8-18, und das ist wieder gleich zwei. Genau dies fiel Leonhard Euler, der von 1707 bis 1783 lebte, bei seiner Beschäftigung mit Polyedern auf. Er formulierte den Zusammenhang zwischen der Zahl der Eckpunkte, Kanten und Flächen in einem Satz, der nach ihm Eulerscher Polyedersatz genannt wird: e+f-k=2, oder manchmal auch in der Form e+f=k+2. Schauen wir uns die Gültigkeit des Satzes bei einigen Beispielen an. Diese kannst du auch sicher in deiner Umgebung finden. Da ist zunächst ein einfacher Würfel, kennst du ja sicher vom Mensch-ärgere-dich-nicht. Prüfen wir die Zahl der Ecken, wir zählen e=8 und die Flächenanzahl ist f=6, da brauchen wir nicht lange nachzudenken. Und die Zahl der Kanten ist k=12. Damit ergibt sich nach dem Eulerschen Polyedersatz: e+f-k=8+6-12=2, stimmt also. Nun zu einem Haus mit einem sogenannten Walmdach. Als Eckenzahl ermitteln wir e=10, für die Flächen folgt f=9 und die Anzahl der Kanten ergibt unten vier, an den Seiten vier, oberhalb des Quaders noch einmal vier und am Dach zählen wir fünf, macht zusammen k=17. Und mit dem Polyedersatz folgt: e+f-k=10+9-17=2, stimmt also wieder. Und als letztes Beispiel sehen wir uns eine Pyramide an. Du kennst eine solche Figur sicher als die Cheops-Pyramide. Sie hat unten vier und oben eine, also e=5 Ecken. Die Flächenanzahl ist leicht als f=5 zu ermitteln. Und die Anzahl der Kanten ergibt sich zu unten vier und am Rand ebenfalls vier, macht zusammen k=8. Und nun wieder der Polyedersatz: e+f-k=5+5-8=2. Damit stimmt für die Pyramide ebenfalls der Eulersche Polyedersatz. Schau mal, ob du in deiner Umgebung noch weitere Beispiele findest. Wir fassen nun kurz zusammen, was wir heute gelernt haben: Polyeder sind geometrische Körper, die nur von ebenen Flächen f begrenzt sind sowie Ecken e und Kanten k besitzen. Der Eulersche Polyedersatz lautet: e+f-k=2 beziehungsweise e+f=k+2. Das war's für heute. Ich hoffe, dir hat es etwas Spaß gemacht und du hast alles verstanden. Bis zum nächsten Mal.
Eulerscher Polyedersatz Übung
-
Nenne den Eulerschen Polyedersatz.
TippsSchau dir einen Würfel an.
- Zähle die Ecken,
- die Flächen und
- die Kanten.
Beim Würfel ist $e=8$, $f=6$ und $k=12$.
Hast du einen Karton, zum Beispiel einen Müslikarton, zur Hand? Zähle die Ecken, die Flächen und die Kanten.
LösungDer Eulersche Polyedersatz besagt, dass
- $e+f-k=2$ oder äquivalent dazu
- $e+f=k+2$ gilt,
- $e$ die Anzahl der Ecken,
- $f$ die Anzahl der Flächen und
- $k$ die Anzahl der Kanten des Polyeders sind.
-
Weise den Eulerschen Polyedersatz bei verschieden Körpern nach.
TippsDer Eulersche Polyedersatz besagt, dass bei jedem Polyeder die Summer der Ecken- und Flächenzahl reduziert um die Kantenzahl immer $2$ sein muss.
Übertrage die Schrägbilder in dein Heft und markiere die bereits gezählten Ecken, Flächen oder Kanten.
LösungDies sind zwei Beispiele zum Eulerschen Polyedersatz, welcher besagt, dass in einem beliebigen Polyeder die Summe der Ecken- und Flächenzahl verringert um die Kantenzahl immer gleich ist, nämlich $2$.
1. Prisma mit sechseckiger Grundfläche:
- die Grund- und Deckfläche haben jeweils sechs Ecken, also insgesamt $e=12$,
- Grund- und Deckfläche sind zwei Flächen, hinzu kommen sechs Seitenflächen, das sind gesamt $k=8$ und
- sowohl die Grund- als auch Deckfläche haben sechs Kanten, zwischen jeweils zwei Seitenflächen liegt eine Kante, also auch wieder sechs. Somit ist $k=18$.
- Es gilt $e+f-k=12+8-18=2$ $\surd$.
- die Grundfläche hat vier Ecken, dazu kommt die Spitze, also insgesamt $e=5$,
- eine Grundfläche und vier Seitenflächen sind insgesamt $k=5$ und
- die Grundfläche hat vier Kanten, zwischen jeweils zwei Seitenflächen liegt eine Kante, also auch wieder vier. Somit ist $k=8$.
- Es gilt $e+f-k=5+5-8=2$ $\surd$.
-
Berechne die fehlende Anzahl an Kanten, Flächen oder Ecken.
TippsDu kannst den Eulerschen Polyedersatz nach jeder der drei Größen umstellen.
Der Eulersche Polyedersatz besagt, dass $e+f-k=2$ gilt, wobei $e$ die Anzahl der Ecken, $f$ die Anzahl der Flächen und $k$ die Anzahl der Kanten sind.
LösungManches Mal kann es einfacher sein,
- die Ecken und Kanten oder
- die Ecken und Flächen oder
- die Flächen und Kanten zu zählen.
Es gilt: $e+f-k=2$. Dies ist äquivalent zu
- $e=k-f+2$ oder
- $f=k-e+2$ oder
- $k=e+f-2$.
- Ein Polyeder mit $5$ Flächen und $9$ Ecken muss demnach $k=9+5-2=12$ Kanten haben. Ein Beispiel für ein solches Polyeder ist ein Prisma mit dreieckiger Grundfläche.
- Ein Polyeder mit $12$ Kanten und $6$ Flächen muss $f=12-6+2=8$ Ecken haben. Ein Beispiel hierfür wäre ein Quader oder ein Würfel.
- Ein Polyeder mit $4$ Ecken und $4$ Flächen muss $k=4+4-2=6$ Kanten haben. Ein Beispiel hierfür ist das Tetraeder, welches in dem Bild zu sehen ist.
- Ein Polyeder mit $10$ Ecken und $15$ Kanten hat $f=15-10+2=7$ Flächen. Ein Beispiel hierfür ist ein Prisma mit fünfeckiger Grundfläche.
-
Weise den Eulerschen Polyedersatz an dem zusammengesetzten Polyeder nach.
TippsDu könntest auch nur die Ecken und Flächen zählen und die Anzahl der Flächen mit dem Eulerschen Polyedersatz bestimmen.
Es gilt $e+f-k=2$.
Zähle die Ecken von unten nach oben:
- Wie viele Ecken hat die Grundfläche?
- Pyramidenstumpf und
- Pyramide.
Die Deckfläche des Pyramidenstumpfs, die gleichzeitig Grundfläche der oberen Pyramide ist, ist keine Fläche des Körpers.
LösungNach dem Eulerschen Polyedersatz gilt
$e+f-k=2$ oder $e+f=k+2$.
Bei diesem Polyeder ist
- die Anzahl der Ecken $e=9$,
- die Anzahl der Flächen $f=9$ und
- die der Kanten $k=16$.
$e+f-k=9+9-16=2$ $\surd$.
-
Bestimme die Polyeder.
TippsPolyeder werden auch Vielflächner genannt.
Beim Polyeder sind alle begrenzenden Flächen eben und nicht gekrümmt.
LösungDer Name des Polyeders kommt aus dem Griechischen für Vielfläche. Es handelt sich also um einen geometrischen Körper, welcher nur von ebenen Flächen und nicht von gekrümmten Flächen begrenzt wird.
Dies ist bei dem Würfel, der Pyramide und dem Prisma der Fall, allerdings nicht bei einem Kegel oder einem Zylinder.
-
Bestimme die Anzahl der Flächen, Kanten und Ecken dem zusammengesetzten Körper.
TippsMach dir eine dreidimensionale Skizze und zähle alle (!) Ecken und Flächen. Die Kanten sind schwierig zu erkennen.
Verwende den Eulerschen Polyedersatz, nachdem du die Ecken und Flächen gezählt hast $e+f-k=2$.
Eine Pyramide hat fünf Ecken und besteht aus fünf Flächen. Ein Quader hat acht Ecken und besteht aus sechs Flächen. Die Denkfläche des Quaders ist geteilt und besteht aus drei Flächen.
LösungMan kann den Eulerschen Polyedersatz verwenden. Hierfür kann man die Ecken und Flächen zählen, falls dies einfacher zu sein scheint als das Zählen der Kanten:
Ecken:
- jede Pyramide hat $5$ Ecken, das sind gesamt $10$ Ecken,
- der Quader hat $8$ Ecken.
- Da die Pyramiden und der Quader keine gemeinsamen Ecken haben, gilt $e=10+8=18$.
- Quader: Die Grundfläche und die Seitenflächen sind zusammen fünf Flächen. Die Deckfläche mit den Pyramiden ist etwas kniffliger.
- Pyramide: Eine Pyramide besteht aus vier Seitenflächen. Damit sind es zusammen acht.
- Die Deckfläche ist durch die zwei Pyramiden in drei Flächen unterteilt worden.
- Zusammen ergibt das dann $f=5+8+3=16$ Flächen.
$e+f=k+2$:
$\begin{align*} 18+16&=k+2&|&-2\\ 32&=k. \end{align*}$
Wir erhalten also insgesamt $e=18$, $f=16$ und $k=32$.
Du kannst du die Kanten auch zählen. Das ist möglich, aber auch schwieriger als die erste Methode.
Kanten:
- Jede Pyramide hat $8$ Kanten. Hinzu kommen
- die $4$ Kanten der Grundfläche und $4$ der Seitenflächen des Quaders. Die Deckfläche ist etwas komplizierter: dort befinden sich zusätzlich zu den Kanten der Pyramiden noch $8$ Kanten.
- Gesamt sind dies: $k=16+16=32$.
4 Kommentare
ps. Hallo
Geile Aufgaben
Hallo
danke!