Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Spannung und Energie

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.9 / 16 Bewertungen
Die Autor*innen
Avatar
Wolfgang Tews
Spannung und Energie
lernst du in der 11. Klasse - 13. Klasse

Spannung und Energie Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Spannung und Energie kannst du es wiederholen und üben.
  • Gib die Einheit der elektrischen Feldstärke an.

    Tipps

    Die Feldstärke gibt an, welche Kraft auf eine Probeladung wirkt.

    Die Spannung und der Plattenabstand können ein elektrisches Feld charakterisieren.

    Lösung

    Um die Feldstärke eines homogenen elektrischen Feldes anzugeben, kann man unterschiedliche Einheiten wählen.

    Stellen wir uns eine Probeladung im Kondensator vor. Auf diese Ladung wirkt eine bestimmte Kraft $F$ in $[N]$, die abhängig ist von der Ladung $q$ in $[C]$ der eingebrachten Probeladung.

    Es gilt $ E = \frac{F}{q} $. Da die Ladung in Coulomb und die Kraft in Newton angegeben wird, ergibt sich für die Einheit des elektrischen Feldes: $ [E]= \frac{N}{C}$.

    Aus einer etwas anderen Betrachtung ergibt sich nun eine weitere mögliche Einheit des elektrischen Feldes. Mit der Spannung $U$, die an den Kondensatorplatten angelegt ist und dem Plattenabstand $d$ ergibt sich mit $ E = \frac{U}{d}$ die zweite mögliche Einheit für das elektrische Feld $\frac{V}{m} $.

    Diese beiden Größen geben jeweils an, wie stark das elektrische Feld zwischen zwei Platten eines Kondensators ist.

  • Bezeichne den Plattenkondensator.

    Tipps

    Die Polung der Gleichspannung bestimmt die Ladung der Kondensatorplatten.

    Es besteht eine Potentialdifferenz zwischen den Platten.

    Lösung

    Ein Plattenkondensator besteht im Wesentlichen aus 3 Bauteilen.

    Den zwei Kondensatorplatten die entgegengesetzt geladen sind und einer Spannungsquelle, die diesen Ladungszustand überhaupt erst ermöglicht. Zwischen den Platten bildet sich dabei ein elektrisches Feld aus, welches die aufgebrachte Energie speichert.

    Betrachten wir den Ladungsvorgang etwas genauer: Eine der Kondensatorplatten liegt am Minuspol der Spannungsquelle an. Von diesen Pol fließen nun Elektronen auf diese Kondensatorplatte. Diese wird dadurch negativ geladen, es besteht ja ein Elektronenüberschuss.

    Da kein elektrischer Strom zwischen den beiden nicht elektrisch leitend verbundenen Platten fließen kann, baut sich eine Potentialdifferenz zwischen den Platten auf und es entsteht ein elektrisches Feld. Dieses beeinflusst nun die Elektronen auf der gegenüberliegenden Platte und sie werden abgestoßen und fließen zum Pluspol der Spannungsquelle. Diese zweite Platte ist dann positiv geladen.

    Diese einfachste Form des Kondensators kann durch die Verwendung eines Dieelektrikums verbessert werden, indem die Kapazität des Kondensators erhöht wird.

  • Bestimme die Einheiten der physikalischen Größen.

    Tipps

    Gib die physikalischen Größen immer in ihrer Grundeinheit an.

    Die Ladung eines Körpers orientiert sich an der Einheitsladung $e^-$

    Lösung

    Um die Vorgänge am Kondensator zu berechnen, müssen wir die Zusammenhänge zwischen einigen physikalischen Größen betrachten. Um nun korrekte Berechnungen durchführen zu können, muss zudem die jeweilige Einheit der einzelnen Größen bekannt sein.

    Bei einigen Größen fällt es dir sicher nicht schwer die Einheit zuzuordnen. Ein Meter [m] ist etwa die bekannte Einheit, in der die Länge angegeben wird. Die Einheit für die elektrische Spannung ist das Volt [V]. Dieses gibt die Potentialdifferenz zwischen zwei Polen an. Die Arbeit ist definiert als die Kraft, die entlang eines Weges verrichtet wird, $ W = F \cdot d$ . Weiterhin ist die Arbeit in Joule [J] anzugeben. Die elektrische Ladung $q$ wird stets in Coulomb [C] angegeben. Sie gibt an, wieviel elektrische Ladung ein bestimmter Probekörper trägt.

    Nun kennst du alle wichtigen Einheiten und physikalische Größen für die Berechnung der Spannung und der Energie im Kondensator.

    Noch ein kleiner Tipp : Achte stets darauf, mit den Grundeinheiten zu rechnen: also [m] anstatt [cm] oder [N] anstatt [kN]. Nur so kommst du zum richtigen Ergebnis.

  • Berechne die elektrischen Feldstärken.

    Tipps

    Rechne in den Grundeinheiten.

    $ E = \frac{F}{q} $

    $ E = \frac{V}{m}$

    Lösung

    Um die elektrische Feldstärke in einem homogenen elektrischen Feld zu ermitteln, können wir den Zusammenhang von Spannung und Plattenabstand sowie den von Probeladung und Kraft nutzen.

    Zunächst betrachten wir den Fall, in dem Spannung und Plattenabstand gegeben sind. Hier gilt $ E = \frac{F}{q}$.

    Wichtig ist es, in den Grundeinheiten zu rechnen. Ist etwa die Ladung in $mC$ gegeben, müssen wir diese zunächst in $C$ umwandeln.

    Es seien $ q = 80 mC$ und $ F = 0,4 N $ gegeben. Nach Umwandlung in die Grundeinheiten ergibt sich $ E = \frac{F}{q} = \frac{0,4N}{80 mC} = \frac{0,4 N }{0,08 C} = 5 \frac{N}{C}$.

    Die elektrische Feldstärke muss demnach also $ 5 \frac{N}{C} $ betragen.

    Betrachten wir nun den Fall mit Spannung $U$ und Plattenabstand $d$. Gegeben seien $U = 200 mV$ und $d = 1 mm$. Auch hier müssen wir zunächst in die Grundeinheiten umformen: $ U = 200 mV = 0,2 V $ und $d = 1mm = 1 \cdot 10^{-3}m$.

    Wir setzen in $ E = \frac{U}{d}$ ein und erhalten so : $ E = \frac{0,2 V }{1 \cdot 10^{-3}m} = 200 \frac{V}{m}$.

    Die Feldstärke beträgt hier nun $200 \frac{V}{m}$.

    Weiterhin gilt $ 1 \frac{N}{C} = 1 \frac{V}{m}$. Somit können wir die elektrischen Felder ohne weitere Umformungen vergleichen.

    Das elektrische Feld im ersten Beispiel ist also schwächer als das im zweiten Fall $ 5 \frac{V}{C} < 200 {V}{m} $.

  • Gib die Formeln zur Berechnung der elektrischen Feldstärke an.

    Tipps

    Die elektrische Feldstärke kann in Abhängigkeit von der Kraft auf eine Probeladung angegeben werden.

    Die Feldstärke nimmt mit abnehmendem Plattenabstand zu.

    Lösung

    Zur Berechnung des homogenen elektrischen Feldes stehen zwei unterschiedliche Formeln zur Verfügung.

    Zum einen kann die Feldstärke über den Zusammenhang von Spannung und Plattenabstand bestimmt werden. $E = \frac{U}{d}$. Hier ist $U$ die an den Platten angelegte Spannung in $V$ und $d$ der Abstand der Kondensatorplatten in $m$. Das elektrische Feld ist also dann besonders stark, wenn eine große Spannung bei möglichst geringem Plattenabstand anliegt.

    Eine zweite Möglichkeit zur Berechnung der Feldstärke ist der Zusammenhang zwischen der Kraft $F$ auf eine Punktladung und ihrer Ladungsmenge $q$. Es gilt $ E = \frac{F}{q}$. Die Kraft $F$ muss dabei in $N$ und die Ladung $q$ in $C$ angegeben werden. Wirkt also eine große Kraft auf eine geringe Ladung, dann ist das elektrische Feld groß.

  • Berechne die fehlenden Größen.

    Tipps

    Die Ladung eines Elektrons beträgt $ e = 1,602 \cdot 10^{-19} C$.

    $ 1 nJ = 1 \cdot 10^{-9} J$.

    $ W = F \cdot d$

    Lösung

    Um die oben gezeigten Aufgaben zu beantworten, müssen wir uns mehrerer Formeln bedienen.

    Fangen wir mit dem Zusammenhang zwischen der Energie (oder Arbeit), der Kraft und dem Plattenabstand im Kondensator an. Hier gilt $ E = F \cdot d$. Die Kraft $F$ multipliziert mit dem Plattenabstand $d$ ergibt die Energie, die im Kondensator gespeichert werden kann. Generell kann also dann viel Arbeit verrichtet werden, wenn ein langer Weg zur Verfügung steht.

    Die Kraft $F$ kann nun weiter aufgelöst werden. Im Kondensator ist diese nämlich durch das Produkt aus Ladung und Feldstärke bestimmt. Es gilt also $ F = E \cdot q $. Auf ein Elektron, welches die Einheitsladung $ e = 1,602 \cdot 10^{-19} C $ trägt und sich in einem elektrischen Feld der Stärke $ E = 1,3 \cdot 10^{17} \frac{V}{m} $ befindet, wirkt demnach die Kraft $F = 0,021 N$.

    Ist nun die Energie gegeben - nehmen wir $ W = 0,77 mJ$ aus dem Beispiel -, kann der erforderliche Plattenabstand bestimmt werden. Es gilt $ W = F \cdot d \to d = \frac {W}{F} = \frac {0,77 mJ}{0,021 N} = 0,037 m = d $.

    Der Plattenabstand muss hier also $ d = 3,7 cm$ betragen:

    Du erkennst: Sind Plattenabstand $d$ und elektrisches Feld $E$ konstant, so ist die Arbeit, die im Kondensator verrichtet werden kann, allein von der Ladung des Probekörpers abhängig, also $q$. $W$ ist also proportional zu $q$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.151

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.928

Lernvideos

37.065

Übungen

34.321

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden