30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Kohärenz 05:36 min

Textversion des Videos

Transkript Kohärenz

Hallo und herzlich willkommen zu "Physik mit Kalle"!   Wir wollen uns heute aus dem Kapitel "Schwingungen und Wellen" mit der Kohärenz beschäftigen. Für dieses Video solltet ihr mindestens den Film über Interferenz und Beugung gesehen haben. Wir lernen heute, was Kohärenz ist, wann genau eine Welle kohärent ist und was Kohärenzzeit und Kohärenzlänge sind.   Dann mal los! Wir haben es oft genug gehört, jetzt wollen wir es endlich wissen: Was ist denn nun Kohärenz genau? Wir haben schon oft gehört, nur an einer kohärenten Welle können Interferenzphänomene beobachtet werden. Die beste, aber meiner Meinung nach nicht so einfach zu verstehende Definition ist: Kohärenz bedeutet, dass die Phase der emittierten Welle einer festen, voraussagbaren Beziehung gehorcht. Da wir schon oft gehört haben, dass ein Laser kohärentes Licht aussendet, wollen wir uns im nächsten Kapitel mal den Doppelspaltversuch ansehen und dabei einmal einen Laser und einmal eine Glühlampe einsetzen.   Ihr kennt ja den Versuchsaufbau: Ich richte meinen Laser auf einen Doppelspalt und kann dann auf einem Schirm dahinter ein ungefähr so aussehendes Interferenzmuster beobachten. Wenn ich nun statt dem Laser eine Glühlampe benutze, sehe ich kein deutliches Interferenzmuster, sondern einen verschwommenen Fleck auf dem Schirm. Woher kommt das? Die von einem Laser ausgesendeten Photonen werden durch optisches Pumpen erzeugt und einer ihrer vielen Vorteile ist, dass sie so gut wie phasengleich sind. Das heißt: Jeder Punkt auf meiner Wellenfront schwingt genau in der gleichen Phase. Daher entstehen an den beiden Spalten - nach dem Huygensschen Prinzip - zwei Elementarwellen, die ebenfalls phasengleich sind und so entsteht auf dem Schirm mein schönes Interferenzmuster.   Eine Glühlampe erzeugt weißes Licht. Das heißt: Die Wellenlängen sind über das gesamte Spektrum verteilt. Außerdem entstehen in einer Glühlampe die Photonen durch spontane Emission, meistens aus einem Heizdraht. Dies ist ein unkontrollierter Vorgang. Das heißt: Es treffen nicht nur Photonen aus verschiedenen Richtungen und mit verschiedenen Wellenlängen auf meinen Doppelspalt, sie haben auch unterschiedlichste Phasen. Die von den jeweiligen Elementarwellen erzeugten Interferenzmuster überlagern sich also auf dem Schirm zu einem undeutlichen Fleck und es ist keine Interferenz mehr beobachtbar.   Wir merken uns also: Bei einem Laser schwingen alle Atome in Phase, das emittierte Licht hat also eine feste Phasenbeziehung - und das ist es, was man unter Kohärenz versteht. Führe ich den Versuch mit einer Glühlampe durch, dann wird Licht verschiedener Wellenlängen von mehreren Orten in unterschiedlicher Phase emittiert - und deshalb ist das Licht meiner Glühlampe nicht kohärent. Und daraus folgt: Führe ich den Versuch mit einem Laser durch, kann ich Interferenz beobachten. Verwende ich stattdessen eine Glühlampe, so ist keine Interferenz sichtbar.   Natürlich kommt auch der beste Laser einmal aus dem Takt. Im letzten Kapitel wollen wir uns deshalb mit Kohärenzzeit und Kohärenzlänge beschäftigen. Im Bild seht ihr eine Schwingung, wie sie von einer Quelle ausgesendet werden könnte. Ihr erkennt: Ab und zu kommt unsere Quelle anscheinend aus dem Takt. Wenn ich das Licht aus dieser Quelle nun auf einen Doppelspalt schicke, so wird mir dieser Taktfehler - ab einem bestimmten Gangunterschied - mein Interferenzmuster durcheinander bringen. Und deshalb hat man den Begriff für Kohärenzzeit und Kohärenzlänge eingeführt, die beschreiben, wie lange die Phasenbeziehung einer Welle gilt.   Die Kohärenzzeit Tk ist die Zeit, während der eine Wellenquelle eine ungestörte Sinusschwingung aussendet. Die im Normalfall praktischere Größe ist die Kohärenzlänge, die wir einmal Lk nennen. Stellt euch vor, ich nehme einen Laserstrahl, teile ihn in zwei Teilstrahlen, mache mit den beiden Strahlen verschiedene Sachen und führe sie am Ende wieder zusammen, um mein Interferenzmuster zu betrachten. Die Kohärenzlänge gibt mir dann an, um wieviel der Weg des einen Teilstrahls maximal länger sein darf, als der des anderen Teilstrahls, damit ich noch Interferenz beobachten kann. Ich kann sie einfach berechnen: Die Kohärenzlänge Lk ist die Strecke, die die Welle während der Kohärenzzeit zurücklegt.   Ich bekomme sie mit der Formel: Lk ist die Kohärenzzeit mal die Ausbreitungsgeschwindigkeit (Lk = c × Tk). Wir wollen noch einmal wiederholen, was wir heute gelernt haben: Nur an kohärenten Wellen kann Interferenz beobachtet werden. Laserlicht ist kohärent, da seine Phase einer festen Beziehung folgt. Und am Schluss haben wir erfahren: Ist der Gangunterschied eines zweigeteilten Strahls bei seiner Wiedervereinigung größer als die Kohärenzlänge Lk, so ist keine Interferenz sichtbar. Ich kann die Kohärenzlänge berechnen, indem ich die Kohärenzzeit (Tk) mit der Ausbreitungsgeschwindigkeit (c) der Welle malnehme.   Das war es schon wieder für heute. Ich hoffe ich konnte euch helfen. Vielen Dank fürs Zuschauen! Vielleicht  bis zum nächsten Mal. Euer Kalle.

Kohärenz Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kohärenz kannst du es wiederholen und üben.

  • Gib an, wann Wellen kohärent sind.

    Tipps

    Die Phasen kohärenter Wellen gehorchen einer festen voraussagbaren Beziehung.

    Lösung

    Wellen sind kohärent, wenn sie mit gleichen Phasen schwingen. Das heißt, sie zeigen keine Phasenverschiebung zueinander. Mit anderen Worten: Ihre Phasen gehorchen einer festen voraussagbaren Beziehung. Wegen dieser Eigenschaft erzeugen kohärente Wellen nach einem Doppelspalt Interferenzbilder.

  • Bestimme die Quellen kohärenter Wellen.

    Tipps

    Welche Quellen emittieren Wellen mit unterschiedlichen Eigenschaften wie Phase, Frequenz und Wellenlänge?

    Lösung

    Ein Funksender emittiert das Nachrichtensignal über eine Antenne. Die Nachrichtensignale, die sogenannten elektromagnetischen Wellen, haben ihre Amplitude und ihre Frequenz moduliert und werden mit gleichen Phasen abgestrahlt. Das bedeutet, dass die mit gleichen Phasen abgestrahlten Wellen kohärente Wellen sind. Ein Funksender ist eine Quelle kohärenter Wellen.

    Ein Mikrowellenherd ist so aufgebaut, dass er nur Mikrowellen mit einer bestimmten Frequenz abstrahlen kann. Da der Mikrowellenherd immer Mikrowellen mit gleichen Frequenzen und gleichen Phasen emittiert, sprechen wir über kohärente Wellen. Ein Mikrowellenherd ist eine Quelle kohärenter Wellen.

    Ein Laser emittiert monochromes Licht, das heißt Wellen mit gleichen Amplituden, gleichen Frequenzen und gleichen Phasen. Da sich diese Welleneigenschaften während des Laserbetriebs nicht verändern, strahlt der Laser kohärente Wellen aus. Ein Laser ist also eine Quelle kohärenter Wellen.

    Die Glühlampe, die Kerze und der Scheinwerfer strahlen Lichtwellen aus, deren Amplituden und Frequenzen unterschiedlich von Welle zu Welle sind. Da die Lichtemission spontan ist, besitzen die Wellen keine Beziehung zueinander. Das bedeutet, diese Wellen sind inkohärente Wellen. Eine Glühlampe, eine Kerze und ein Scheinwerfer sind Quellen inkohärenter Wellen.

  • Bestimme die Kohärenzzeit und den Fall, in dem kein Interferenzmuster erzeugt wird.

    Tipps

    Berechne die Kohärenzzeit mithilfe der gegebenen Formel.

    Was passiert mit dem Interferenzmuster von gestörten Wellen, die keine Phasenbeziehung mehr zueinander haben?

    Lösung

    Betrachten wir die gegebene Gleichung der Kohärenzlänge $l_{ k }=c.t_{ k }$ als eine Funktion der Kohärenzzeit multipliziert mit der Konstante $c=3×10^{ 8 }\quad m/s$, die sogenannte Lichtgeschwindigkeit. Die gesuchte Dauer der ungestörten Laserstrahlung, die sogenannte Kohärenzzeit, bekommen wir durch die Umformung der gegebenen Gleichung: $t_{ k }=\frac { { l }_{ k } }{ c }$.

    In unserer Aufgabe ist die Kohärenzlänge, die maximale Länge der ungestört ausgesendeten Wellen, 3,0 km. Da wir schon die Kohärenzlänge und die Lichtgeschwindigkeit wissen, können wir die Kohärenzzeit berechnen:

    $t_{ k }=\frac { { l }_{ k } }{ c } =\frac { 3,0\times { 10 }^{ 3 }\quad m }{ 3,0\times { 10 }^{ 8 }\quad m/s } ={ 10 }^{ -5 }\quad s$.

    Dieses Ergebnis bedeutet, dass der Laser am Anfang des Betriebes während ${ 10 }^{ -5 }\quad s$ ungestörte Wellen ausstrahlt mit maximaler Länge von 3,0 km. Bis dahin kann man Interferenzmuster beobachten. Dahinter strahlt der Laser unregelmäßig, d.h., die Wellen haben keine feste Phasenbeziehung zueinander. Daher ist dort kein Interferenzmuster mehr zu beobachten.

  • Bestimme die inkohärenten Wellen.

    Tipps

    Welche Wellen zeigen Phasenverschiebung?

    Lösung

    Wellen sind inkohärent (das erste, das dritte und das fünfte Bild), wenn sie in unterschiedlichen Phasen schwingen. Das heißt, sie zeigen eine Phasenverschiebung zueinander. Mit anderen Worten: Ihre Phasen gehorchen keiner festen voraussagbaren Beziehung. Aus diesem Grund erzeugen inkohärente Wellen nach einem Doppelspalt keine Interferenzbilder.

  • Ordne die Ereignisse, die das Verhalten des Laserlichts an einem Doppelspalt beschreiben.

    Tipps

    Wie wird das Laserlicht ausgestrahlt?

    Wie verhalten sich die emittierten Wellen?

    Was passiert nach der Spaltung?

    Das sichtbare Ergebnis hinter dem Doppelspalt ist…

    Lösung

    Bei einem Laser werden Atome stimuliert, in Phase zu schwingen. Die Atome emittieren kohärentes Licht, dessen Wellen sich mit gleichen Phasen ausbreiten. Im Laser befinden sich die Lichtquelle und zwei Spiegel. Einer der Spiegel ist zu 100% undurchlässig und der andere nur zu 99,3%. Innerhalb dieses Raumes wird das Licht stetig hin und her reflektiert, bis dieses den Laser verlässt. Dieser Vorgang wird auch als „optisches Pumpen" bezeichnet. Nach diesem Vorgang verlässt kohärentes Licht den Laser. Jeder Punkt auf den kohärenten Wellen schwingt nun genau in der gleichen Phase. Trifft das Licht auf den Doppelspalt, entsteht an beiden Spalten jeweils eine Elementarwelle, die zueinander phasengleich sind. Durch die Überlagerung der phasengleichen Elementarwellen entsteht auf dem Schirm ein eindeutiges Interferenzmuster mit stark ausgeprägten Maximas und Minimas.

  • Ordne die Ereignisse, die das Verhalten vom Licht einer Glühlampe am Doppelspalt beschreiben.

    Tipps

    Wie wird das Glühlampenlicht ausgestrahlt?

    Wie verhalten sich die emittierten Wellen?

    Was passiert nach der Spaltung?

    Das sichtbare Ergebnis der Doppelspaltung inkohärenten Lichtes ist...

    Lösung

    So kann man die Ereignisse beschreiben:

    1. Bei einer Glühlampe wird meistens ein Heizdraht angeschaltet.
    2. Der Heizdraht strahlt spontan weißes Licht aus, dessen Wellenlängen über das gesamte Spektrum verteilt sind.
    3. Die gestrahlten inkohärenten Photonen, die aus verschiedenen Richtungen stammen und verschiedene Wellenlängen (auch verschiedene Phasen) besitzen, treffen sich an dem Doppelspalt.
    4. Die zwei Elementarwellen sind phasenungleich und erzeugen Interferenzmuster, die sich auf dem Schirm überlagern.
    5. Das überlagerte Interferenzmuster bildet einen undeutlichen Fleck.