30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Frequenz und Wellenlänge

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

sofatutor kostenlos testen
Bewertung

Ø 3.0 / 12 Bewertungen

Die Autor*innen
Avatar
Team Wissensdurst
Frequenz und Wellenlänge
lernst du in der 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema Frequenz und Wellenlänge

Inhalt

Frequenz und Wellenlänge

Das Wort Frequenz hast du mit Sicherheit schon einmal gehört. Zum Beispiel dann, wenn es um Tonhöhen oder um Radiosender geht. Vielleicht kennst du in diesem Zusammenhang auch schon den Begriff Wellenlänge. Doch was genau geben Frequenz und Wellenlänge eigentlich an?

Definition von Frequenz und Wellenlänge

Die Begriffe Frequenz und Wellenlänge verwendet man im Zusammenhang mit Wellen. Schauen wir uns eine solche Welle genauer an: Sie ist eine regelmäßige Abfolge von Auslenkungen, die man auch als Wellenberge und -täler beschreiben kann. Solche Schwingungen können sich mit der Zeit im Raum ausbreiten. Wellen findet man in unserem Alltag überall: So werden zum Beispiel Töne in Form von Wellen übertragen (Schallwellen), aber auch Radiosignale, Wärme und Licht (elektromagnetische Wellen).

Räumliche Betrachtung der Wellenbewegung

Wenn sich eine Welle im Raum ausbreitet, kann man eine Momentaufnahme machen. Diese kann man darstellen, indem man in einem Diagramm die Auslenkung der Welle an verschiedenen Raumpunkten aufträgt: An manchen Orten ist die Welle stark ausgelenkt, an anderen weniger. Die Stärke der Auslenkung bezeichnet man auch als Amplitude. Die Wellenlänge gibt an, wie groß der Abstand zwischen zwei benachbarten Punkten mit gleicher Amplitude ist. Dazu kann man sich zum Beispiel die Wellenberge ansehen: Zwei aufeinanderfolgende Wellenberge haben die gleiche Auslenkung. Der Abstand zwischen ihnen ist die Wellenlänge $\lambda$. Die Wellenlänge wird in Metern $(\text{m})$ angegeben, wobei je nach Wellenlängenbereich auch geeignete Einheitenvorsätze verwendet werden können (zum Beispiel Millimeter, Zentimeter, usw.).

Frequenz Wellenlänge im Vergleich als Darstellung

Zeitliche Betrachtung der Wellenbewegung

Nun schauen wir uns die Wellenbewegung nicht an verschiedenen Orten an, sondern zu verschiedenen Zeitpunkten. Dazu betrachten wir einen festen Ort. An diesem verändert sich die Auslenkung der Welle im Verlauf der Zeit. Wenn man die Auslenkung über die Zeit aufträgt, erhält man also wieder eine Wellenfunktion. Der Abstand zweier benachbarter Punkte gleicher Amplitude, also zum Beispiel der Abstand aufeinanderfolgender Wellenberge, wird als Periodendauer $\text{T}$ der Welle angegeben. Die Frequenz $\text{f}$ ist der Kehrwert der Periodendauer:

$\text{f}=\frac{1}{\text{T}}$

Je schneller sich die Amplitude der Welle an einem Punkt also ändert, desto höher ist ihre Frequenz.

Da die Einheit der Periodendauer die Sekunde $(\text{s})$ ist, kann die Frequenz in $\frac{1}{\text{s}}$ ausgedrückt werden. Das wird auch oft in der Einheit Hertz $(\text{Hz}=\frac{1}{\text{s}})$ zusammengefasst. Diese Einheit wurde nach dem deutschen Physiker Heinrich Hertz (1857–1894) benannt, dem es als Erstes gelang, elektromagnetische Wellen nachzuweisen.

Als Zusammenfassung wollen wir den Unterschied zwischen Frequenz und Wellenlänge hervorheben:

  • Die Wellenlänge bezieht sich auf den räumlichen Abstand zweier Punkte mit gleicher Amplitude, zum Beispiel von zwei Wellenbergen.
  • Die Frequenz bezieht sich auf den zeitlichen Abstand zweier Zeitpunkte gleicher Amplitude, zum Beispiel von zwei Wellenbergen.

Doch natürlich stehen diese beiden Größen auch im Zusammenhang miteinander. Dafür schauen wir uns im Folgenden an, wie man aus der Frequenz einer Welle die Wellenlänge berechnen kann und andersherum.

Frequenz und Wellenlänge berechnen

Um aus der Wellenlänge die Frequenz zu berechnen, muss man die Phasengeschwindigkeit $\text{c}$ der Welle kennen. Das ist die Geschwindigkeit, mit der sie sich ausbreitet. Je schneller sich die Welle ausbreitet, desto schneller ist auch die Änderung ihrer Auslenkung an einem bestimmten Ort – und somit ihre Frequenz. Mathematisch kann man das so ausdrücken:

$f=\frac{c}{\lambda}$

Natürlich kann man diese Formel auch nach $\lambda$ umstellen, um die Wellenlänge aus einer bestimmten Frequenz zu berechnen.

Die Phasengeschwindigkeit von elektromagnetischen Wellen im Vakuum ist die Lichtgeschwindigkeit. Im Folgenden soll ein Teil des elektromagnetischen Spektrums genauer betrachtet werden.

Hertzsche Wellen

Elektromagnetische Wellen haben, je nach Wellenlänge bzw. Frequenz, unterschiedliche Eigenschaften. Zum Beispiel verändert sich die Wechselwirkung mit Materie. Daher teilt man elektromagnetische Strahlung auch in verschiedene Wellenlängenbereiche ein (elektromagnetisches Spektrum). Der Teil des Spektrums, der insbesondere zur Übertragung von Radio-, Fernseh- und Handysignalen dient, kann als hertzsche Strahlung beschrieben werden. Dazu gehören Wellenlängen von $1~ \text{cm}$ bis $10 ~\text{km}$. Hertzsche Wellen wiederum teilt man in die folgenden Bereiche ein: Langwellen, Mittelwellen, Kurzwellen, Ultrakurzwellen, Dezimeterwellen, Zentimeterwellen.

Transkript Frequenz und Wellenlänge

Elektromagnetische Wellen können ganz unterschiedliche Frequenzen und Wellenlängen haben. Die Wellenlänge Lambda ist der kleinste Abstand zweier Punkte gleicher Phase. Die Frequenz F ist die Anzahl der Schwingungen pro Zeiteinheit. Beide Eigenschaften hängen direkt zusammen. Je größer die Wellenlänge einer Welle ist, desto geringer ist ihre Frequenz. Denn bei gleicher Ausbreitungsgeschwindigkeit werden weniger Schwingungen pro Zeiteinheit übertragen. Nach Heinrich Hertz heißt die Maßeinheit für die Frequenz elektromagnetischer Wellen heute Hertz (Hz). Ein Hertz entspricht dabei einer Schwingung pro Sekunde. Elektromagnetische Wellen mit Wellenlängen zwischen zehn Kilometern und einem Zentimeter werden auch als Hertz’sche Wellen bezeichnet. Sie liegen im Frequenzbereich zwischen 30 Kilohertz und 30 Gigahertz. Es wird unterschieden zwischen Langwellen, Mittelwellen, Kurzwellen, Ultrakurzwellen, Dezimeterwellen oder Mikrowellen und Zentimeterwellen. Hertz’sche Wellen werden hauptsächlich zur Übertragung von Rundfunk und Fernsehen oder zum Betrieb von Handys genutzt.

Frequenz und Wellenlänge Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Frequenz und Wellenlänge kannst du es wiederholen und üben.
  • Definiere die Frequenz und die Wellenlänge.

    Tipps

    Die Wellenlänge gibt eine Strecke an. Wie könnte die Einheit dann sein?

    Die Periodendauer gibt die Zeit an, die für eine vollständige Schwingung benötigt wird. Wie steht diese im Verhältnis zur Frequenz?

    Die Frequenz ist der Umkehrwert der Periodendauer. Welche Einheit könnte die Frequenz dann haben?

    Lösung

    Elektromagnetische Wellen können in einem Diagramm eingezeichnet werden. Sie haben dabei einen sinusförmigen Verlauf. Je nachdem was betrachtet wird, werden die Achsen unterschiedlich gekennzeichnet. Die y-Achse beschreibt hierbei immer die Auslenkung.

    Wenn die x-Achse die Strecke bezeichnet, dann handelt es sich um eine Momentaufnahme der Welle. Es wird jedes Teilchen in seiner momentanen Auslenkung gezeigt. Hier kann die Wellenlänge leicht abgelesen werden.
    Sie entspricht der Strecke zwischen zwei benachbarten Punkten gleicher Phase.
    Ab hier beginnt die Welle sozusagen von Neuem und die nächsten Punkte sehen wieder exakt gleich aus.

    Wenn die x-Achse der Zeit entspricht, dann wird der Verlauf eines einzelnen schwingenden Teilchens der Welle gezeigt. Eine Welle besteht nämlich aus vielen einzelnen auf- und abschwingenden Teilchen. Hier kann die Periodendauer leicht abgelesen werden und auch die Frequenz.
    Die Periodendauer entspricht dabei der Zeit, die für eine komplette Schwingung benötigt wird.
    Die Frequenz entspricht der Anzahl der Schwingungen, die in einer Sekunde vollbracht werden.

    Die Frequenz und die Periodendauer hängen dabei durch die Formel
    $f=\frac{1}{T}$
    zusammen.

  • Gib die Formel für die Frequenz an.

    Tipps

    Elektromagnetische Wellen breiten sich im Vakuum mit der Lichtgeschwindigkeit aus. Die Ausbreitungsgeschwindigkeit wird mit dem Formelzeichen $c$ abgekürzt.

    Die Betrachtung einer Einheitenrechnung hilft häufig beim Finden von physikalischen Formeln.

    Wie müssten die Einheit der Ausbreitungsgeschwindigkeit $\frac{m}{s}$ und die der Wellenlänge $m$ mathematisch in Bezug gesetzt werden, wenn als Ergebnis die Einheit der Frequenz $\frac{1}{s}=Hz$ herauskommen soll?

    Lösung

    Die Frequenz wird mit dem Formelzeichen $f$ abgekürzt.
    Die Wellenlänge mit $\lambda$.

    Diese beiden Größen verhalten sich antiproportional:
    $f \sim \frac{1}{\lambda}$.

    Die Proportionalitätskonstante ist die Ausbreitungsgeschwindigkeit $c$. Elektromagnetische Wellen, wozu auch die Hertz'schen Wellen gehören, breiten sich im Vakuum mit Lichtgeschwindigkeit aus.

    Es gilt also:
    $f=\frac{c}{\lambda}$.

    Dies kann auch mit einer Einheitenrechnung hergeleitet werden. Die Frequenz hat die Einheit $\frac{1}{s}=Hz$. Die Wellenlänge wird in Metern und die Ausbreitungsgeschwindigkeit in Metern pro Sekunde angegeben.

    $\frac{[c]}{[\lambda]}=\dfrac{\frac{m}{s}}{m}=\frac{1}{s}=Hz=[f]$

  • Erkläre die Abhängigkeit zwischen Frequenz und Wellenlänge.

    Tipps

    Die Frequenz ergibt sich aus dem Quotienten aus Ausbreitungsgeschwindigkeit und Wellenlänge.

    Zwei Kreispendel werden mit gleicher Geschwindigkeit gedreht. Welches der Pendel schafft in einer gewissen Zeit mehr Umdrehungen? Gibt es eine Größe, die mit der Wellenlänge verglichen werden könnte?

    Die Strecke eines Umlaufs könnte mit der Wellenlänge verglichen werden. Je länger die Strecke ist, desto länger braucht das Pendel für eine Umdrehung. Ist die Frequenz bei größerer Strecke dann kleiner oder größer?

    Lösung

    Die Frequenz ergibt sich aus dem Quotienten aus Ausbreitungsgeschwindigkeit und Wellenlänge.
    $f= \frac{c}{\lambda}$
    Da die Wellenlänge im Nenner steht und die Proportionalitätskonstante im Zähler, ist die Wellenlänge indirekt proportional zur Frequenz.
    Damit folgt mathematisch: je größer die Wellenlänge, desto kleiner die Frequenz.

    Diese Formel kannst du dir aber auch logisch herleiten.
    Die Wellenlänge gibt an, wie groß der Abstand zwischen zwei benachbarten, phasengleichen Punkten ist, zum Beispiel also zwischen zwei Wellenbergen.
    Die Frequenz besagt, wie viele Schwingungen in einem gewissen Zeitintervall erfolgen. Das heißt, wie häufig ein Wellenberg erreicht wird.
    Dabei ist natürlich die Geschwindigkeit, hier die Ausbreitungsgeschwindigkeit, wichtig.

    Stell dir vor, ein Freund und du laufen auf einer Laufbahn. Ihr seid genau gleich schnell. Jedoch ist deine Laufbahn viel länger als die deines Freundes. Wer ist dann schneller wieder beim Startpunkt angelangt?

    Natürlich schafft derjenige, mit der kürzeren Laufbahn, in einer gewissen Zeit mehr Runden. Wäret ihr Wellen, dann wäre deine Wellenlänge langwelliger als die deines Freundes. Und du hättest damit eine geringere Frequenz als dein Freund. Du schaffst nämlich weniger Runden (=Wellenberge) in der gleichen Zeit.

  • Berechne die Frequenz.

    Tipps

    Die Frequenz berechnet sich aus dem Quotienten der Ausbreitungsgeschwindigkeit und der Wellenlänge.

    Setze die gegebenen Werte ein und achte dabei auf die richtigen Einheiten. Du kannst Einheiten mit einer Einheitenrechnung überprüfen. Welche Einheit hat die Frequenz?

    Die Frequenz trägt die Einheit Hertz. Diese wird mit Hz abgekürzt.

    Lösung

    Die Frequenz einer Welle entspricht dem Quotienten aus Ausbreitungsgeschwindigkeit $c$ und Wellenlänge $\lambda$.
    $f=\frac{c}{\lambda}$

    Dort müssen die gegebenen Werte eingesetzt werden. Dabei musst du aber die richtigen Einheiten beachten. Die Ausbreitungsgeschwindigkeit muss deswegen in Metern angegeben werden:
    $c=300000 ~ \frac{km}{s}=300000000 ~ \frac{m}{s}=3 \cdot 10^8 ~ \frac{m}{s}$.

    Damit folgt:
    $f=\dfrac{3 \cdot 10^8 ~ \frac{m}{s}}{1200 ~m}=250000 ~ \frac{1}{s}=250000 ~ Hz=250 ~kHz = 0,25 ~MHz$.

    Dabei ist Hertz die Einheit, in der die Frequenz angegeben wird.

  • Erkläre die Einheit Hertz.

    Tipps

    Die Wellenlänge $\lambda$ wird in Metern angegeben. Sie gibt an, wie weit zwei benachbarte, phasengleiche Punkte voneinander entfernt sind.

    Die Frequenz $f$ gibt an, wie viele Schwingungen pro Sekunde vollzogen werden.

    Lösung

    Die Einheit der Frequenz wird auch Hertz $Hz$ genannt. Sie ist dabei nach dem Physiker Heinrich Hertz benannt. Dies geschah, weil Hertz als Erster elektromagnetische Wellen nachweisen konnte.

    Die Frequenz gibt dabei die Anzahl der Schwingungen pro Sekunde an.

    Es gilt also:
    $[f]=1 ~ \frac{1}{s}=1 ~ Hz$.

    Die Frequenz hat damit ein Hertz, wenn genau eine Schwingung pro Sekunde stattfindet.

  • Finde heraus, um welche Wellenart es sich handelt.

    Tipps

    Nutze das Verhältnis zwischen Frequenz und Wellenlänge, um zuerst die Wellenlänge zu berechnen.

    Wird diese Formel nach der Wellenlänge $\lambda$ umgestellt, müssen die gegebenen Wert nur noch eingesetzt und die Wellenlängen mit der Graphik verglichen werden. Bedenke, die Werte in die richtigen Einheiten umzuwandeln.

    Damit keine ungewollte Verschiebung des Kommas auftritt, müssen die Frequenzen alle in Hertz umgewandelt werden. Dafür muss das Komma um dem Präfix entsprechend viele Stellen nach rechts verschoben werden.

    Lösung

    Zwischen Frequenz $f$ und Wellenlänge $\lambda$ gilt der Zusammenhang:
    $f=\frac{c}{\lambda}$.

    Dabei ist die Proportionalitätskonstante die Ausbreitungsgeschwindigkeit der Welle. Im Vakuum breiten sich elektromagnetische Wellen mit der Lichtgeschwindigkeit aus. Es gilt dann:
    $c\approx 300000 ~\frac{km}{s}=300000000 ~\frac{m}{s}=3 \cdot 10^8 ~ \frac{m}{s}$.

    Wird die Formel für die Frequenz nach der Wellenlänge umgestellt, folgt:
    $\lambda=\frac{c}{f}$.

    Die Frequenzen müssen dabei in Hertz, also in $\frac{1}{s}$, umgewandelt werden. Dazu muss der jeweilige Präfix betrachtet und das Komma entsprechend verschoben werden.

    Beispiel:
    $750 ~kHz=750 \cdot 10^3 ~Hz=750000 ~ Hz$

    Anschließend müssen die Werte nur noch eingesetzt und mit der Tabelle abgeglichen werden.

    $\begin{array}{c|c|c|r} \text{k}&\text{Kilo}&10^3&1\,000 \\ \hline \text{M}&\text{Mega}&10^6&1\,000\,000 \\ \hline \text{G}&\text{Giga}&10^9&1\,000\,000\,000 \end{array}$

    Es sind hier nur beispielhafte Werte. So wie die Wellenlängen bewegen sich auch die Frequenzen in gewissen Bereichen.
    Du kannst die Bereiche ja mal berechnen!

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

2.230

sofaheld-Level

3.746

vorgefertigte
Vokabeln

10.811

Lernvideos

44.101

Übungen

38.759

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden