Trägheitsmoment J
Erfahre, was das Trägheitsmoment ist und wie es sich auf die Winkelbeschleunigung eines Körpers auswirkt. Finde heraus, wie man das Trägheitsmoment berechnet und sieh dir praktische Beispiele an, um das Konzept besser zu verstehen. Interessiert? Dies und vieles mehr findest du im folgenden Text!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Trägheitsmoment J
Was ist das Trägheitsmoment?
Um zu verstehen, was genau das Trägheitsmoment eines Körpers ist, stellen wir uns zunächst ein kleines Experiment vor. Wir lassen zwei unterschiedliche, runde Gegenstände eine schräge Fläche herunterrollen und beobachten, wie stark sie beschleunigen. Du kannst das zum Beispiel mit einer Klebebandrolle und einem Klebestift ausprobieren. Dabei stellen wir fest, dass die Gegenstände unterschiedlich stark beschleunigen. Die Größe, die für diesen Unterschied sorgt, ist das Trägheitsmoment starrer Körper. Als starren Körper bezeichnen wir alle Objekte, die sich nicht oder nur sehr wenig verformen lassen.
Das Trägheitsmoment wird manchmal auch Massenträgheitsmoment genannt.
Wiederholung – Drehmoment und Winkelbeschleunigung
Bevor wir zur Definition des Trägheitsmoments kommen, wiederholen wir kurz, was das Drehmoment und die Winkelbeschleunigung sind.
Als Drehmoment bezeichnen wir die Drehwirkung einer Kraft auf einen drehbar gelagerten Körper, wie zum Beispiel einen Hebel. Es verursacht also eine Drehbewegung und ist damit für die Rotation das, was die Kraft für die Translation ist. Die Drehbewegung wird durch die Winkelgeschwindigkeit charakterisiert. Die Winkelbeschleunigung bezeichnet dann die Änderung der Winkelgeschwindigkeit, ganz analog zur Beschleunigung der Translation.
Trägheitsmoment — Definition
Wir können uns für das Trägheitsmoment, beziehungsweise für den Zusammenhang zwischen Trägheitsmoment und Drehmoment, folgende Definition aufschreiben:
Das Trägheitsmoment gibt an, welche Winkelbeschleunigung ein Körper aufgrund eines Drehmoments erfährt.
Jeder Körper hat mehrere Trägheitsmomente, die sich jeweils auf eine bestimmte Drehachse beziehen. Die Anzahl verschiedener Trägheitsmomente und deren Größe hängt davon ab, wie die Masse des Körpers verteilt ist. Bei einer Vollkugel haben beispielsweise alle Drehachsen, die durch den Kugelmittelpunkt gehen, das gleiche Trägheitsmoment. Dabei gilt grundsätzlich, dass das Trägheitsmoment umso größer ist, je mehr Masse in großer Entfernung zur Drehachse ist. Und umso größer das Trägheitsmoment ist, desto größer ist das Drehmoment , das wir aufbringen müssen, um die Winkelbeschleunigung zu erreichen. Das Trägheitsmoment der Rotation entspricht also der trägen Masse der Translation.
Trägheitsmoment — Formel
Wir können das Trägheitsmoment bestimmen, indem wir das Drehmoment und die erreichte Winkelbeschleunigung messen und die folgende Formel benutzen, die diese drei Größen miteinander verbindet:
Du siehst schon, dass das Trägheitsmoment die Einheit hat, wenn du die Einheiten für das Drehmoment und die Beschleunigung einsetzt. Wenn wir jetzt Newton in Si-Einheiten umschreiben, erhalten wir:
Wenn wir die Formel für das Trägheitsmoment nach umstellen, erhalten wir folgende Gleichung:
Diese Gleichung sieht der Grundgleichung der Bewegung, , sehr ähnlich. Und das ist kein Zufall, denn sie ist die Grundgleichung der Rotation.
Wie kann man das Trägheitsmoment berechnen?
Man kann die Trägheitsmomente für beliebige starre Körper auch berechnen, ohne das Drehmoment und die Winkelbeschleunigung zu messen. Dafür muss man nur die genaue Masseverteilung des Körpers kennen. Allerdings werden solche Berechnungen schnell sehr komplex, wenn die Masse in komplizierter Weise verteilt ist. Die Formel zur Berechnung sieht so aus:
Das ist das Integral über die gesamte Masse des Körpers. Dabei ist d ein unendlich kleines Massestück und der Ortsvektor, also die Position dieses Massestücks. Diese bezieht sich dabei auf die Drehachse, zu der das Trägheitsmoment ausgerechnet werden soll. Du kannst dir sicher vorstellen, dass das für komplizierte Masseverteilungen, wie zum Beispiel bei einer Teekanne, sehr schwierig ist. Für einfachere Masseverteilungen lässt sich das Trägheitsmoment allerdings deutlich einfacher berechnen.
Trägheitsmoment berechnen — Beispiele
In der folgenden Abbildung siehst du ein paar Objekte, die um eine Drehachse rotieren. Für manche Objekte ist es sinnvoll, die Formeln auswendig zu kennen.
Hier findet ihr noch einmal die wichtigsten Trägheitsmomente in einer Tabelle. Dabei ist der Radius des jeweiligen Körpers.
Formel | |
---|---|
Trägheitsmoment Vollzylinder | |
Trägheitsmoment Hohlzylinder | |
Trägheitsmoment Vollkugel | |
Trägheitsmoment Hohlkugel | Trägheitsmoment Formelsammlung: Trägheitsmomente bezogen auf Drehung um die Symmetrieachse |
Übungen
Rechts neben Video und Text findest du interaktive Übungen, in denen du deine neuen Kenntnisse nutzen kannst. Kannst du zum Beispiel die Frage beantworten, ob das Trägheitsmoment einer Scheibe kleiner oder größer ist als das einer Kugel?
Transkript Trägheitsmoment J
Hallo und herzlich willkommen zu Physik mit Kalle. Wir beschäftigen uns heute, aus dem Kapitel "Mechanik", mit dem Trägheitsmoment J. Für dieses Video solltet Ihr bereits die Filme über das Drehmoment und die Winkelbeschleunigung gesehen haben. Wir lernen heute:Was ist das Trägheitsmoment J?Wie kann ich es berechnen?Zum Schluss sehen wir uns ein paar Beispiele an. Dann starten wir heute mit einem kleinen Experiment. Wir haben zwei Gegenstände, eine Rolle Klebeband und einen Klebestift. Wir legen sie hin und lassen sie beide gleichzeitig losrollen. Wir beobachten, der Klebestift beschleunigt schneller als die Klebebandrolle. Das liegt daran, dass sie unterschiedliche Trägheitsmomente haben. Was aber ist nun das Trägheitsmoment genau? Einfach gesagt können wir uns folgende Definition aufschreiben: Das Trägheitsmoment J gibt an, welche Winkelbeschleunigung α ein Körper aufgrund eines Drehmoments M erfährt. Wir hatten ja schon im letzten Video über die Winkelbeschleunigung festgestellt, dass wir leider kein Mittel haben, um Drehmoment und Winkelbeschleunigung zu verknüpfen. Das Trägheitsmoment scheint also dieses fehlende Glied zu sein. Leider hilft uns das aber auch nicht so richtig zu verstehen, was das Trägheitsmoment denn nun eigentlich ist. Deswegen schreiben wir den nächsten Merksatz auf: Das Trägheitsmoment hängt von der gewählten Drehachse ab und davon, wie die Masse des Körpers um diese Drehachse verteilt ist. Das heißt also, ein Körper kann viele verschiedene Trägheitsmomente haben, die davon abhängen, um welche Achse er rotieren soll. Dabei gilt folgende Faustregel. Je mehr von der Masse des Körpers von der Drehachse entfernt ist, desto größer ist das Trägheitsmoment für diese Achse. Und je größer das Trägheitsmoment ist, desto größer muss auch das Drehmoment sein um die gleiche Winkelbeschleunigung α zu erreichen. Erinnert Euch das an die Trägheit der Masse? Sehr gut. Soll es auch, denn das Trägheitsmoment ist für die Rotation das, was die Masse für die normale Translation, also die Bewegung von Punkt A zu Punkt B ist. Je größer das Trägheitsmoment einer Masse also ist, umso "stärker" wehrt sich der Körper dagegen zu rotieren. Wie ich dieses Trägheitsmoment nun berechnen kann, sehen wir uns im nächsten Kapitel an. Wir haben gehört, je größer das Trägheitsmoment ist, desto größer muss auch das Drehmoment sein, um die gleiche Winkelbeschleunigung α zu erzeugen. Die erste Formel, mit der wir das Trägheitsmoment ausrechnen können, lautet also: J=M/α. Dabei sehen wir auch gleich, die Einheit des Trägheitsmoments [J]=1Nms². Mit dieser Formel kann ich also das Trägheitsmoment ausrechnen, wenn ich M und α kenne. Viel wichtiger aber, wenn ich α nach drüben bringe, diese Formel M=J×α, hilft mir bei bekanntem Trägheitsmoment die Winkelbeschleunigung α auszurechnen, die aufgrund des Drehmoments M entsteht. Wenn Du diese Formel mit der Formel F=m×a vergleichst, verstehst du vielleicht, warum man das die Grundgleichung der Rotation nennt. So wie F=m×a die Grundgleichung der Bewegung ist, ist M=J×α die Grundgleichung der Rotation. Ich kann das Trägheitsmoment aber auch berechnen, wenn ich nur die Verteilung der Masse im Körper ansehe. Wir schauen uns wieder unsere beiden Beispiele von gerade eben an. Wenn ihr hofft, hier eine leichte Formel zu finden, muss ich euch leider enttäuschen. Das Trägheitsmoment ist im Allgemeinen schwer zu berechnen. Man kann es mithilfe folgender Formel berechnen. Das Trägheitsmoment J eines Körpers ist das Integral über die gesamte Masse von r²dm. Für manche Körper, bei denen die Masse auf eine relative leichte Art und Weise verteilt ist, kann man mit dieser Formel aber trotzdem etwas anfangen. Wir betrachten zum Beispiel unsere Klebebandrolle links. Ein Körper, dessen gesamte Masse m im Abstand r zur Drehachse ist, also ein Ring oder eben wie in unserem Beispiel, eine sehr dünne Klebebandrolle, hat das Trägheitsmoment J=m×r². Es wird in der Schule wahrscheinlich nicht von Euch verlangt, das Trägheitsmoment eines Körpers auszurechnen, aber es ist wahrscheinlich, dass ihr zumindest ein paar einfache kennen solltet. Deswegen schauen wir uns nun, im letzten Kapitel, ein paar Beispiele an. In der Animation seht Ihr einige rotierende Körper und die dazugehörigen Trägheitsmomente. Wir fangen mal von rechts, von den einfachen Sachen an. Als Erstes sehen wir zwei rotierende Stäbe. Beim Ersten geht die Drehachse genau durch die Mitte beim Zweiten durch das Ende. Wie Ihr seht, ist das Trägheitsmoment des unteren Stabes 4× so hoch, wie das des Oberen. Das bedeutet, die Masse ist im Schnitt 4× so weit entfernt von der Drehachse.Als Nächstes betrachten wir den Unterschied zwischen einer rotierenden Vollkugel und einer rotierenden Hohlkugel. Wir sehen, hier ist der Unterschied, also der Quotient Trägheitsmoment pro Masse, gar nicht mehr so groß. Die massive Kugel hat das Drehmoment 2/5 m×R², während die Hohlkugel das Drehmoment 2/3 m×R² hat. Nun kommen wir zu dem Fall, den wir bereits eben schon hatten, bei unserem Rollwettbewerb. Das Trägheitsmoment eines Vollzylinders beträgt ½mR² und das Trägheitsmoment eines Hohlzylinders mR². Zumindest diese beiden solltet Ihr kennen. Als Letztes sehr Ihr das komplizierte Beispiel, die rotierende Teekanne. Als Letztes sehr Ihr das komplizierte Beispiel, die rotierende Teekanne. Aber ganz ehrlich gesagt, ich wüsste auch nicht, wo, ich da anfangen sollte. Wenn Euch so etwas in einer Prüfung begegnet, dann ist normalerweise immer das Trägheitsmoment mit angegeben. Wir wollen noch mal wiederholen, was wir heute gelernt haben. Das Trägheitsmoment J eines Körpers hängt von der gewählten Drehachse und der Verteilung der Masse um diese Achse ab. Es gibt an, welche Winkelbeschleunigung der Körper aufgrund eines auf ihn wirkenden Drehmoments erfährt. Wir hatten gehört: Wirkt auf einen Körper das Drehmoment M, so erfährt er die Winkelbeschleunigung α und diese beiden hängen über das Trägheitsmoment J miteinander zusammen. Man nennt dies, die Grundgleichung der Rotation und sie lautet M=J×α. Man kann das Trägheitsmoment eines Körpers aber auch berechnen, wenn man die exakte Geometrie und Masseverteilung kennt. Diese Berechnung ist aber eher schwierig. Ihre Formell autet: J=Integral über die Masse von r²dm. So das wars schon wieder für heute, ich hoffe ich konnte Euch helfen. Vielen Dank fürs Zuschauen und bis bald, Euer Kalle.
Trägheitsmoment J Übung
9.326
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.202
Lernvideos
38.693
Übungen
33.502
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
Gutes Video. Wäre super wenn man ein Video zur Berechnung der Flächenträgheitsmomente mit Integralen machen würde. Mit zusammengesetzten Flächen
Sehr gutes Video, der direkte Vergleich zwischen Translation und Rotation trägt viel zum Verständnis bei!