Lorentzkraft
Die Lorentzkraft beeinflusst bewegte elektrische Ladungen in einem Magnetfeld und wurde nach Hendrik Antoon Lorentz benannt. Erfahre, wie sie sich auf stromdurchflossene Leiter auswirkt, wie das elektromotorische Prinzip funktioniert und erhalte Beispiele aus der Technik. Neugierig geworden? Das und vieles mehr erwartet dich im folgenden Text!
- Lorentzkraft – Definition
- Was ist die Lorentzkraft? – Das Leiterschaukel-Experiment
- Lorentzkraft – das elektromotorische Prinzip
- Lorentzkraft – Beispiel aus der Technik
- Lorentzkraft – Formel
- Lorentzkraft – Einheit
- Elektromotorisches Prinzip und elektromagnetische Induktion – Tabellarischer Vergleich
- Ausblick – das lernst du nach Lorentzkraft
- Zusammenfassung – Lorentzkraft
- Häufig gestellte Fragen zum Thema Lorentzkraft – Definition, Regeln und Anwendung

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Lorentzkraft Übung
-
Beschreibe das elektromotorische Prinzip.
TippsDas elektromotorische Prinzip ist die Umkehrung der Induktion.
LösungDas elektromotorische Prinzip besagt, dass auf einen stromdurchflossenen Leiter im Magnetfeld eine Kraft senkrecht zu den Feldlinien und senkrecht zur Stromrichtung wirkt. Somit ist es genau die Umkehrung der „Induktion".
-
Ordne den Fingern ihre Bedeutung in der UVW-Regel zu.
TippsMit der UVW-Regel können wir vorhersagen in welche Richtung sich die Leiterschaukel im „Leiterschaukelexperiment" bewegen wird.
LösungDie UVW-Regel erklärt die Zusammenhänge zwischen der Stromrichtung, welche „Ursache" oder kurz „U" genannt wird, der Richtung der Magnetfeldlinien, die hier „Vermittlung" (kurz „V") genannt wird, und der „Wirkung" dieser beiden, kurz „W". Die Wirkung entspricht der Auslenkung durch die Lorentz-Kraft.
Dabei wird die Ursache durch den Daumen, die Vermittlung mit dem Zeigefinger und die Wirkung mit dem Mittelfinger dargestellt.
-
Untersuche die Unterschiede zwischen Elektromotor und Generator.
TippsFür Generator und Motor gilt die „Linke-Hand-Regel".
Ein Automotor erzeugt Bewegung.
Ein Generator erzeugt Strom aus Bewegung.
LösungDer Elektromotor basiert auf dem „elektromotorischen Prinzip". Das heißt, ein stromdurchflossener Leiter erfährt eine Kraft im Magnetfeld. Daraus resultiert eine Bewegung, die genutzt werden kann. Der Generator funktioniert genau umgekehrt, das heißt, wird ein Magnet im Magnetfeld bewegt, entsteht eine Spannung. Dieses Prinzip kennen wir als Induktion. Das heißt, bei beiden Vorgängen, Induktion und dem elektromotorischen Prinzip, kann die „Linke-Hand-Regel" eingesetzt werden. Wichtig ist hierbei nur die technische und die physikalische Stromrichtung zu unterscheiden.
-
Leite die Richtung des Induktionsstroms her.
TippsMagnetfeld, Strom und Lorentzkraft sind senkrecht zueinander.
Der Daumen bezeichnet die Ursache, hier also die Lorentzkraft.
Das Magnetfeld ist weiterhin die Vermittlung, also der Zeigefinger.
LösungAnhand der Zeichnung können wir die Aussagen leicht prüfen. Es gilt die UVW-Regel, das heißt, Magnetfeld, Lorentzkraft und Elektronenbewegung müssen stets senkrecht aufeinanderstehen. Zeigt zum Beispiel das Magnetfeld (Zeigefinger) von oben nach unten und die Lorentzkraft (Daumen) auf dich zu, muss der Strom nach rechts fließen. Für den Fall, das keine Kraft wirkt, fließt auch kein Strom.
-
Benenne den Entdecker der Kraft auf einen stromdurchflossenen Leiter im Magnetfeld.
TippsNach ihm wurde die Wirkung der UVW-Regel benannt.
LösungDie Kraft auf einen stromdurchflossenen Leiter im Magnetfeld heißt Lorentz-Kraft. Das liegt daran, dass Hendrick Antoon Lorentz diese Kraft entdeckt hat. Du kennst diese Kraft auch als „Wirkung" in der UVW-Regel für die linke Hand.
-
Analysiere was passiert, wenn wir die technische Stromrichtung anstatt der physikalischen betrachten.
TippsWir betrachten das angelegte äußere Magnetfeld, nicht direkt das des stromdurchflossenen Leiters.
Probiere es mit der UVW-Regel einmal aus !
LösungWir legen der Lorentzkraft mit der UVW-Regel eine Richtung auf Basis der Richtungen von Strom und Magnetfeld zugrunde. Die technische Stromrichtung wirkt von + nach -, also der physikalischen Stromrichtung entgegen.
Das heißt, wir müssten bei der UVW-Regel den Daumen in die andere Richtung, also nach links, halten. Das Magnetfeld bleibt gleich. Somit würde sich die Richtung der Kraft umkehren, nicht mehr von dir weg, sondern auf dich zu.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.211
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie