30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Lichtgeschwindigkeit 06:05 min

Textversion des Videos

Transkript Lichtgeschwindigkeit

In einer klaren Nacht kannst du eine Unmenge an Sternen am Himmel entdecken. Stellst du dir manchmal, vor in einem Raumschiff zu ihnen zu reisen und neue Welten zu entdecken? Wusstest du aber, dass viele der Sterne, die du am Himmel siehst, schon erloschen sind: Wenn wir zum Sternenhimmel schauen, schauen wir in die Vergangenheit. Warum das so ist, erfährst du in diesem Video zur Lichtgeschwindigkeit.

Videoübersicht

Dafür sprechen wir zunächst über Blitz und Donner und über die Messung der Lichtgeschwindigkeit. Dann erkläre ich dir das Phänomen der erloschenen Sterne, die wir aber noch leuchten sehen. Zum Abschluss klären wir, weshalb ein Weltraumtelefonat schwierig ist.

Die Lichtgeschwindigkeit

Das kennst du sicherlich: Bei einem Gewitter, siehst du erst den Blitz und dann hörst du den Donner. Vielleicht kennst du auch den Grund dafür: Der Schall muss sich erst bis zu uns ausbreiten. Beim Licht ist es genau so. Die Lichtgeschwindigkeit ist nur viel größer als die Schallgeschwindigkeit.

Wie kann man so eine große Lichtgeschwindigkeit messen? Hier sind wir im Arbeitszimmer von Hippolyte Fizeau. Es ist das Jahr 1848. Fizeau ist gerade dabei, seine neue Erfindung auszuprobieren: Eine Apparatur für die Messung der Lichtgeschwindigkeit. Um diese Apparatur zu verstehen, nutzen wir das Lichtstrahlenmodell.

Das Lichtstrahlenmodell

Von Fizeau’s Lichtquelle aus trifft ein Lichtstrahl auf einen halb durchlässigen Spiegel und wird umgelenkt. Dann läuft er durch ein Zahnrad. Je nachdem ob ein Zahn im Weg ist oder nicht, kann das Licht hindurch laufen. Dann läuft der Strahl durch das Fenster zu einem 9 Kilometer entfernten Spiegel. Vom Spiegel wird das Licht zurück geworfen. Beim Rückweg muss es auch wieder durch das Zahnrad laufen und landet erst dann in Fizeau’s Auge.

Fizeau´s Zahnrad

Während das Licht zum Spiegel und zurück läuft, dreht sich das Zahnrad weiter. Wenn Fizeau die Drehgeschwindigkeit des Zahnrads nun hoch genug wählt, trifft das Licht beim Rückweg auf einen Zahn. Es kommt dann also kein Licht bei Fizeau an. Aus dem Verhältnis von Weglänge und Laufzeit zwischen Lücke und Zahn des Zahnrads kann man die Geschwindigkeit des Lichtes bestimmen.

Man kommt zu dem Ergebnis, dass sich Licht mit einer Geschwindigkeit von etwa 300.000 Kilometern pro Sekunde ausbreitet. Das bedeutet, dass das Licht in einer Sekunde mehr als sieben mal um die Erde kreisen könnte.Wenn Fizeau seinen Spiegel auf dem Mond platziert hätte, könnte sich sein Zahnrad sehr langsam drehen. Für die Strecke hin zum Mond und zurück braucht das Licht schon fast drei Sekunden.

Die Apollo 11 Mission

Tatsächlich haben Wissenschaftler diesen Versuch gemacht. Dafür hat ein Raumschiff der Apollo 11 Mission einen Spiegel zum Mond gebracht. Mit einem Laser haben die Wissenschaftler einen Lichtpuls ausgesendet und die Zeit bis zu seiner Rückkehr gemessen. Das Ziel des Experimentes war aber nicht die Messung der Lichtgeschwindigkeit, sondern die genaue Bestimmung des Abstands zwischen Erde und Mond.

Die Lichtgeschwindigkeit können wir heute mit moderneren Methoden viel genauer als mit Fizeaus Methode bestimmen. Dadurch kann man auch die Lichtgeschwindigkeit in einem Medium wie Wasser relativ genau bestimmen. Die Lichtgeschwindigkeit ist nämlich abhängig vom Medium, in dem sich das Licht bewegt. In Luft beträgt sie etwa 300.000 Kilometer pro Sekunde. In Wasser nur etwa 225.000 Kilometer pro Sekunde.

Die Lichtgeschwindigkeit im Vakuum ist die größte mögliche Geschwindigkeit und eine Naturkonstante. Gerundet entspricht der Wert etwa dem Wert für die Lichtgeschwindigkeit in Luft. Kommen wir damit zurück zum Sternenhimmel und den erloschenen Sternen. Obwohl die Lichtgeschwindigkeit im Vakuum so groß ist, kann das Licht von einem weit entfernten Stern Tausende oder sogar Millionen von Jahren unterwegs sein. Deshalb sind manche Sterne, die wir am Nachthimmel sehen, eigentlich schon längst erloschen. Licht und somit auch Signale können sich also nicht schneller als mit Lichtgeschwindigkeit ausbreiten.

Zusammenfassung zur Lichtgeschwindigkeit

Wenn man zum Beispiel vom Mars eine Nachricht zur Erde schicken würde, müsste man deshalb mindestens 6 Minuten auf eine Antwort warten. Solche Verzögerungen machen jedes Weltraumtelefonat mit der Erde extrem nervenaufreibend. Fassen wir also noch einmal zusammen: Licht breitet sich mit Lichtgeschwindigkeit aus.

Diese ist vom Medium abhängig. In Wasser beträgt sie etwa 225.000 Kilometer pro Sekunde. In Luft und im Vakuum beträgt sie etwa 300.000 Kilometer pro Sekunde. Die Lichtgeschwindigkeit im Vakuum ist die größte bisher beobachtete Geschwindigkeit und eine Naturkonstante. Wenn du zum Sternenhimmel schaust, schaust du also in die Vergangenheit. Würden wir einen großen Spiegel irgendwo im Weltraum entdecken, könntest du vielleicht mit einem sehr guten Teleskop deine eigene Geburt beobachten. Eine interessante Vorstellung, oder?

7 Kommentare
  1. Cooles Vidio

    Von Christine Luetz, vor 6 Monaten
  2. Super Video .

    Von Acetindere, vor 9 Monaten
  3. Ein echt geniales Video!
    Ich habe alles fantastisch verstanden und mein Physik Lehrer war total begeistert, als ich es richtig erklären konnte.
    So viel Mühe und Arbeit und auch noch super erklärt!
    Eindeutig meine Lieblings Tutoren.
    5 Sterne ;)

    Von Sofia Constante, vor etwa 2 Jahren
  4. Ihr seit meine Lieblings Tutoren :)
    Echt geniales Video, hab alles super verstanden!

    Von Annika Dietmar, vor mehr als 2 Jahren
  5. @aura-gra Eine Naturkonstante ist eine Größe, die einen bestimmten Zahlenwert besitzt. Er ist nicht veränderbar sondern man kann nur versuchen, ihn möglichst genau zu berechnen.

    Beispiele sind neben der Lichtgeschwindigkeit die Gravitationskonstante, Elementarladung e und das plancksche Wirkungsquantum h.

    Von Jannes S., vor etwa 4 Jahren
  1. Was ist eine naturkonstante?

    Von Aura Gra, vor etwa 4 Jahren
  2. Ich wusste gar nicht wie schnell die Lichtgeschwindigkeit sein kann. Ich hätte nie gedacht das die 300.000 km pro sec. schafft. Nun weiß ich es . Daaaaaannnnkkkkeeeeee:-)

    Von Anjelimi, vor mehr als 4 Jahren
Mehr Kommentare

Lichtgeschwindigkeit Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Lichtgeschwindigkeit kannst du es wiederholen und üben.

  • Fasse dein Wissen über die Lichtgeschwindigkeit zusammen.

    Tipps

    Die Lichtgeschwindigkeit und ihre Eigenschaften liegen außerhalb unserer Erfahrungswelt.

    Im Vakuum bewegt sich Licht völlig unbeeinflusst fort.

    Lösung

    Die Lichtgeschwindigkeit im Vakuum ist eine Naturkonstante und mit rund $300~000\frac {km} {s}$ die größte Geschwindigkeit, die je gemessen wurde. In einer Sekunde legt das Licht damit eine Strecke zurück, die siebenmal länger ist als der Umfang unserer Erde. Diese Geschwindigkeiten kann man sich nicht mehr wirklich vorstellen.

    Sämtliche Informationen, die wir erhalten, können maximal mit dieser Geschwindigkeit übertragen werden. Das spielt in unserer Erfahrungswelt keine große Rolle, da die Zeit, die das Licht für normale Entfernungen benötigt, unfassbar klein ist. Daher kann man den Eindruck bekommen, das Licht breitet sich mit unendlicher Geschwindigkeit aus. In größeren Maßstäben muss aber die Endlichkeit der Lichtgeschwindigkeit technisch berücksichtigt werden, beispielsweise bei der Informationsübertragung mit Satelliten.

    In Stoffen breitet sich das Licht immer noch unvorstellbar schnell, aber mit geringeren Geschwindigkeiten als im Vakuum aus.

  • Setze die Lichtgeschwindigkeit im Vakuum mit der in anderen Medien ins Verhältnis.

    Tipps

    Je stärker die Wechselwirkung des Lichtes mit den Teilchen in einem Stoff ist, also je dichter ein Stoff, desto geringer ist die Lichtgeschwindigkeit.

    Lösung

    In einem Stoff bewegt sich das Licht zwischen den einzelnen Teilchen mit der Lichtgeschwindigkeit, mit der es sich auch im Vakuum fortbewegt. Dazwischen kommt es jedoch immer wieder zu Wechselwirkungen mit den Teilchen des Stoffes, was die Ausbreitung des Lichtes verzögert.

    In Luft, einem gasförmigen Stoff, ist die Teilchendichte gering. Die Wechselwirkungen treten selten auf. Darum bewegt sich das Licht durch Luft fast mit derselben Geschwindigkeit wie im Vakuum. In der Flüssigkeit Wasser beträgt die Lichtgeschwindigkeit nur noch rund 225 000 Kilometer pro Sekunde. In einem Feststoff wie Glas ist sie noch geringer, sie beträgt dort etwa 160 000 Kilometer pro Sekunde. Im Feststoff Diamant ist sie noch kleiner: lediglich 125 000 Kilometer pro Sekunde.

  • Schätze ab, in welcher Entfernung man eine Verzögerung des Lichtsignals feststellen könnte.

    Tipps

    Welche Strecke legt das Licht in einer Zehntelsekunde zurück?

    Lösung

    Die Strecke, die für diese Messmethode mit einem Menschen als Zeitnehmer notwendig wäre, ist auf der Erde nicht realisierbar.

    Die Lichtgeschwindigkeit kann also entweder über größere Entfernungen bestimmt werden wie bei der Messung eines Laserpulses zwischen Erdoberfläche und Mondspiegel. Moderne Verfahren nutzen aber die technischen Möglichkeiten aus, sehr kurze Zeitspannen messen zu können. Damit entfällt die Notwendigkeit, lange Strecken zur Messung der Lichtgeschwindigkeit zu verwenden.

  • Beschreibe die Ursachen der gezeigten Phänomene beim Licht.

    Tipps

    Bei geringen Entfernungen ist die Zeit, die das Licht zum Zurücklegen benötigt, nicht wahrnehmbar.

    Bei Entfernungen im astronomischen Maßstab sind die Zeiten, die das Licht zum Zurücklegen der Entfernungen benötigt, sehr groß.

    Lösung

    In unserer eigenen Erfahrungswelt spielt die Endlichkeit der Lichtgeschwindigkeit aufgrund ihres hohen Wertes keine Rolle. Normale Entfernungen legt das Licht in Bruchteilen von Sekunden zurück. Das fällt uns dann auf, wenn bei Phänomenen auch geringere Geschwindigkeiten wie die Schallgeschwindigkeit auftreten.

    Betrachtet man die astronomischen Größenordnungen, so sieht man, dass die Lichtgeschwindigkeit dort vergleichsweise gering erscheint. Um die Entfernung vom nächstgelegenen Stern zur Erde zurückzulegen, benötigt das Licht über vier Jahre. Entfernungen im Weltall werden daher häufig in Lichtjahren angegeben. Ein Lichtjahr ist dabei die Entfernung, die das Licht in einem Jahr zurücklegt! Unsere Galaxie, die Milchstraße, besitzt einen Durchmesser von 100 000 Lichtjahren.

  • Ermittle die Geschwindigkeit, mit der Lichtsignale in Glasfasern übertragen werden.

    Tipps

    Ermittle 70% der Lichtgeschwindigkeit im Vakuum.

    Beachte die richtige Einheit.

    Lösung

    In Glasfaserkabeln werden die Informationen mit einer Geschwindigkeit von etwa 210 000 Kilometern pro Sekunde übertragen. Dies entspricht 70% der Lichtgeschwindigkeit im Vakuum.

    Durch den Einsatz von Glasfaserkabeln können die enormen Mengen an Daten weltweit übertragen werden. Die Informationen werden dabei nicht mehr elektrisch (über Kupferkabel) übermittelt, sondern optisch mittels Licht, weil der Transport der Daten so effektiver ist.

  • Bestimme die Zeit, die das Licht für die Strecke von der Sonne zur Erde benötigt.

    Tipps

    Das Licht bewegt sich mit konstanter Geschwindigkeit durch das Vakuum.

    Zur Bestimmung der Zeit t benötigst du den Weg s und die Geschwindigkeit v des Lichtes.

    Verwende zur Berechnung die Formel für die gleichförmige Bewegung.

    Es gilt: $s=v\cdot t$.

    Umgestellt nach t ergibt sich: $t=\frac {s} {v}$.

    Lösung

    Das Licht benötigt rund 8 Minuten für den Weg von der Sonne zur Erde. Das heißt, das Licht, dass wir in dem Moment wahrnehmen, wenn wir zur Sonne schauen, ist bereits 8 Minuten alt.

    Auch bei unserer Sonne schauen wir also schon ein kleines Stück in die Vergangenheit. Aber bei Weitem nicht so stark, wie bei Sternen, die Tausende oder noch mehr Lichtjahre von uns entfernt sind.