Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Schallgeschwindigkeit in unterschiedlichen Medien

Die Schallgeschwindigkeit ist die Geschwindigkeit, mit der sich Druckschwankungen wellenförmig ausbreiten. Sie hängt von der Temperatur, der Elastizität des Mediums und der Masse der Teilchen ab. In unterschiedlichen Materialien variiert die Schallgeschwindigkeit. Im Vakuum gibt es keine Schallgeschwindigkeit. Weißt du, ob Gasen eine niedrigere Schallgeschwindigkeit als Festkörper und Flüssigkeiten haben? Lerne heute!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Schallgeschwindigkeit in unterschiedlichen Medien

Was ist Schallgeschwindigkeit?

1/5
Bereit für eine echte Prüfung?

Das Schallgeschwindigkeit Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten

Lerntext zum Thema Schallgeschwindigkeit in unterschiedlichen Medien

Schallgeschwindigkeit – Definition

Bei Schall handelt es sich um Druckschwankungen, die sich wellenförmig ausbreiten. Deswegen spricht man auch von Schallwellen.

Die Schallgeschwindigkeit ist die Geschwindigkeit, mit der sich Schallwellen, also Druckschwankungen, ausbreiten.
Sie bestimmt also, wie lange es dauert, bis ein Geräusch aus einer Schallquelle bei dir ankommt.

Solche Druckschwankungen können auf verschiedene Art und Weise entstehen: durch Zusammenstöße, ruckartige oder sich periodisch wiederholende Bewegungen (Schwingungen) – oder auch durch eine Temperaturänderung oder andere physikalische Phänomene, die Teilchen in Bewegung bringen.

Wusstest du schon?
Donner ist das Geräusch, das entsteht, wenn ein Blitz die Luft erhitzt! Ein Blitz kann die Luft auf unglaubliche 3000030\,000 Grad Celsius aufheizen, was dazu führt, dass sich die Luft explosionsartig ausdehnt und das Donnergeräusch erzeugt. Das ist ungefähr fünf Mal heißer als die Oberfläche der Sonne – innerhalb kürzester Zeit! Kein Wunder also, dass Donner so laut ist.

Schallgeschwindigkeit – Einflussfaktoren

Wie groß die Schallgeschwindigkeit in einer konkreten Situation ist, hängt von verschiedenen Faktoren ab.

Kennst du das?
Hast du auch schon einmal bei einem Feuerwerk zuerst den Lichtblitz gesehen und dann den Knall gehört? Das passiert, weil die Schallgeschwindigkeit viel langsamer ist als die Lichtgeschwindigkeit. Die Lichtgeschwindigkeit ist so hoch, dass wir das Licht fast sofort sehen, während der Schall etwa 343343 Meter pro Sekunde zurücklegt.
Das Wissen über die Schallgeschwindigkeit hilft dir, die Verzögerung zwischen Sehen und Hören besser zu verstehen.

Schallgeschwindigkeit – Temperatur

Einer dieser Faktoren ist die Temperatur: Wird ein Medium, zum Beispiel Luft, erwärmt, bewegen sich die einzelnen Luftteilchen schneller. Sie können dann die Schallschwingung schneller an andere Teilchen weitergeben, und die Schallgeschwindigkeit wird größer. Der allgemeine Zusammenhang zwischen Schallgeschwindigkeit und Temperatur für Luft lautet also:

Je höher die Temperatur, desto schneller der Schall. Deswegen wird die Schallgeschwindigkeit in Luft auch immer zusammen mit einer Temperatur angegeben.

Temperatur in C^\circ\text{C} Schallgeschwindigkeit in Luft in ms\frac{\text{m}}{\text{s}} Schallgeschwindigkeit in Luft in kmh\frac{\text{km}}{\text{h}}
5050 361361 13001\,300
3030 349349 12561\,256
2020 343343 12351\,235
00 332332 11951\,195
20{-}20 319319 11481\,148
30{-}30 313313 11271\,127
50{-}50 300300 10801\,080

Im Temperaturbereich zwischen 20 C<ϑ<40 C-20~^\circ\text{C}<\vartheta<40~^\circ\text{C} lässt sich die Schallgeschwindigkeit in Luft mit folgender Formel in guter Näherung berechnen:

cLuft=(331,5+0,6ϑC)msc_\text{Luft}=\left(331{,}5+0{,}6\,\frac{\vartheta}{^\circ\text{C}}\right)\frac{\text{m}}{\text{s}}

Schallgeschwindigkeit – Elastizität

Eine weitere Einflussgröße bei Festkörpern ist die Elastizität des Mediums. Schall breitet sich in Festkörpern nämlich etwas anders aus, als beispielsweise in Luft, weil die Teilchen sich nicht völlig frei bewegen können. Das können wir leicht verstehen, wenn wir uns die Wechselwirkung der Teilchen wie im folgenden Bild vorstellen.

Schallgeschwindigkeit in Festkörpern

Die Teilchen werden hier durch Kugeln repräsentiert, die durch Schraubenfedern verbunden sind. Eine Schallwelle wäre in diesem Modell eine Auslenkung der Kugeln, die zu einer Streckung und Stauchung der Federn führt. Zu Beginn wirkt eine Kraft auf die äußerste Kugel (4), und staucht so die Feder zwischen den Kugeln (3) und (4). Die gestauchte Feder will sich aber wieder auf ihre ursprüngliche Länge ausdehnen, und beschleunigt dabei Kugel (4) nach rechts und Kugel (3) nach links, die wiederum die Feder zwischen (2) und (3) staucht. So wandert die Schallwelle von rechts nach links.
Je höher die Elastizität der Schraubenfedern, umso größer ist auch die Schallgeschwindigkeit. Deshalb ist auch in Materialien mit höherer Elastizität die Schallgeschwindigkeit größer. Allgemein ist die Schallgeschwindigkeit in Festkörpern und Flüssigkeiten größer als in Gasen. Das liegt daran, dass dort die Teilchen stärker gekoppelt sind, also die Wechselwirkung größer ist.

Schallgeschwindigkeit – Teilchenmasse

Insbesondere in Gasen hängt die Schallgeschwindigkeit auch von der Masse der Teilchen ab. Je leichter die Teilchen sind, desto weniger Energie wird benötigt, um sie in Bewegung zu versetzen. So kann sich die Schallwelle schneller ausbreiten. Ein sehr bekanntes Beispiel ist der Vergleich zwischen Luft und Helium. Luft besteht hauptsächlich aus Stickstoff und Sauerstoff, die beide etwa die 3,5-fache Masse von Helium haben. Deswegen ist die Schallgeschwindigkeit bei 20°C20 \text{°C} in Helium etwa dreimal schneller als in Luft. Die höhere Geschwindigkeit führt auch zu der sehr hohen und piepsigen Stimme, die man durch das Einatmen von Helium bekommt.

Schallgeschwindigkeit in verschiedenen Medien

Der Betrag der Schallgeschwindigkeit ist abhängig vom Medium, also dem Material, in dem sich der Schall ausbreitet. In der folgenden Tabelle kannst du sehen, dass sich der Schall in festen Materialien, zum Beispiel Eisen, wesentlich schneller ausbreitet als in Luft.

Medium Schallgeschwindigkeit in ms\frac{\text{m}}{\text{s}} bei 20C20\,^\circ\text{C} Schallgeschwindigkeit in kmh\frac{\text{km}}{\text{h}} bei 20C20\,^\circ\text{C}
Schallgeschwindigkeit Luft 343343 12351\,235
Schallgeschwindigkeit Helium 981981 35323\,532
Schallgeschwindigkeit Wasser 14841\,484 53425\,342
Schallgeschwindigkeit Eisen 51705\,170 1861218\,612
Schallgeschwindigkeit Stahl 58505\,850 2106021\,060
Schallgeschwindigkeit Glas 40004\,000 bis 55005\,500 1440014\,400 bis 1980019\,800

Schallgeschwindigkeit bei Luft

Teste dein Wissen zum Thema Schallgeschwindigkeit!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Schallgeschwindigkeit bestimmen

Eine einfache experimentelle Bestimmung der Schallgeschwindigkeit funktioniert über eine Laufzeitbestimmung, also die Bestimmung der Zeit tLauft_\text{Lauf}, die ein Schallsignal für das Zurücklegen einer bestimmten Strecke ss benötigt. Sie ergibt sich dann mit der Formel:

cSchall=stLaufc_\text{Schall}=\dfrac{s}{t_\text{Lauf}}

Wusstest du schon?
Schon im 17. Jahrhundert wurde die Schallgeschwindigkeit mit Kanonen gemessen. Dabei wurde die Zeit zwischen dem Sehen des Mündungsfeuers und dem Hören des Knalls gemessen.
Man erhielt dabei Werte im Bereich von 300ms300\,\frac{\text{m}}{\text{s}}.

Die Idee, das Mündungsfeuer als Startsignal zu nehmen, funktioniert deshalb so gut, weil die Geschwindigkeit des Lichts um so viel größer ist als die des Schalls, dass sie bei Entfernungen auf der Erde vernachlässigt werden kann.

Schallgeschwindigkeit in Gasen und Flüssigkeiten

In Flüssigkeiten und Gasen breitet sich der Schall ausschließlich als Longitudinalwelle ausbreitet, d. h. Schwingungsrichtung und Ausbreitungsrichtung sind gleich.

Die Schallgeschwindigkeit lässt sich unter diesen Umständen mithilfe der Dichte ϱ\varrho und einer Konstante KK ausrechnen, die angibt, wie stark der Stoff bei einem bestimmten Druck pp sein Volumen verändert, dem sogenannten adiabatischen Kompressionsmodul.

Dabei gilt:

cSchall=Kϱc_\text{Schall}=\sqrt{\dfrac{K}{\varrho}}

Schallgeschwindigkeit im idealen Gas

Mit dem Modell des idealen Gases, das unter Normalbedingungen reale Gase gut beschreibt, lässt sich das adiabatische Kompressionsmodul leicht ausrechnen, wenn man die herrschende Dichte und den Adiabatenexponenten ϰ\varkappa kennt, der mit den Freiheitsgraden ff der beteiligten Gasteilchen zusammenhängt.

Es gilt: K=ϰpK=\varkappa \cdot p

Dabei ist in guter Näherung ϰ=f+2f\varkappa=\dfrac{f+2}{f}

EIn einatomiges Gas, zum Beispiel ein Edelgas, hat f=3f=3 Freiheitsgerade – es kann sich in alle drei Raumrichtungen bewegen. Ein zweiatomiges Gas wie Stickstoff (N2)\left( \text{N}_{2} \right) oder Sauerstoff (O2)\left(\text{O}_{2} \right), dessen Molekül einer Hantel gleicht, hat f=5f=5 Freiheitsgrade – die drei Raumrichtungen sowie zwei Drehbewegungen senkrecht zur Achse. Außerdem lassen sich die Druck und Dichte eines idealen Gases mithilfe der Allgemeinen Gasgleichung und der molaren Masse MM des Gases berechnen. Dazu benötigen wir die universale Gaskonstante RR, das Molvolumen VmolV_\text{mol} und seine absolute Temperatur TT.

Es gilt die Dichtedefintion des idealen Gases

ϱ=MVmol\varrho=\dfrac{M}{V_\text{mol}}

und die Allgemeine Gasgleichung für ein Mol

pVmol=RTp\,V_\text{mol}=R\,T

Für den Quotienten aus pp und ϱ\varrho ergibt sich dann:

pϱ=(RT Vmol)(M Vmol)=RTM\dfrac{p}{\varrho}=\dfrac{\left(\frac{R\,T}{~V_\text{mol}}\right)}{\left(\frac{M}{~V_\text{mol}}\right)}=\dfrac{R\,T}{M}

Damit können wir die Schallgeschwindigkeit in Luft berechnen.

Die allgemeine Gaskonstante ist R=8,3145JmolKR=8{,}3145\,\frac{\text{J}}{\text{mol}\cdot \text{K}}.

Die molare Masse von können wir leicht in guter Näherung ausrechnen, wenn wir uns auf die Hauptbestandteile der Luft, Stickstoff und Sauerstoff, beschränken und berücksichtigen, dass der Stickstoffanteil etwa 78%78\,\% und der Sauerstoffanteil etwa 21%21\,\% ist. Die molare Masse von molekularem Stickstoff ist MStickstoff=28gmolM_\text{Stickstoff}=28\,\frac{\text{g}}{\text{mol}}, die von molekularem Sauerstoff MSauerstoff=32gmolM_\text{Sauerstoff}=32\,\frac{\text{g}}{\text{mol}}.

MLuft0,7828gmol+0,2132gmol=28,56gmol=0,02856kgmolM_\text{Luft} \approx 0{,}78 \cdot 28\,\frac{\text{g}}{\text{mol}} + 0{,}21 \cdot 32\,\frac{\text{g}}{\text{mol}} = 28{,}56\,\frac{\text{g}}{\text{mol}} = 0{,}02856\,\frac{\text{kg}}{\text{mol}}

Beide Gase, aus denen Luft hauptsächlich besteht, haben f=5f=5 Freiheitsgerade. Wir betrachten Luft bei einer Temperatur von ϑ=20C\vartheta=20\,^\circ \text{C}.

Dann ist die absolute Temperatur T=(273,15+20) K=293,15 KT=(273{,}15 + 20)~\text{K}=293{,}15~\text{K}.

Es gilt also:

cSchall=Kϱ=ϰpϱ=ϰRTM=f+2fRTMc_\text{Schall}=\sqrt{\dfrac{K}{\varrho}}=\sqrt{\dfrac{\varkappa \, \cdot \, p}{\varrho}}=\sqrt{\varkappa \cdot \dfrac{R\,T}{M}}=\sqrt{\dfrac{f+2}{f} \cdot \dfrac{R\,T}{M}}

cSchall=5+258,3145JmolK293,15 K0,02856kgmol346msc_\text{Schall}=\sqrt{\dfrac{5+2}{5} \cdot \dfrac{8{,}3145\,\frac{\text{J}}{\text{mol}\cdot \text{K}} \, \cdot \, 293{,}15~\text{K}}{0{,}02856\,\frac{\text{kg}}{\text{mol}}}} \approx 346\,\frac{\text{m}}{\text{s}}

Dies ist zwar nicht genau der Wert, der gemessen wird, aber er wurde ja auch mit starken Vereinfachungen und unter Vernachlässigung anderer Luftanteile, wie z. B. der Luftfeuchtigkeit, ermittelt.

Schallgeschwindigkeit im Alltag

Wenn wir im Alltag von Schallgeschwindigkeit sprechen, meinen wir damit üblicherweise die Schallgeschwindigkeit in Luft. Neben Druckwellen bei Explosionen können sich sogar einige von Menschen gebaute Objekte schneller bewegen als die Schallgeschwindigkeit – Flugzeuge zum Beispiel. Die Concorde, eine französisch-britische Passagiermaschine, erreichte schon im Jahr 1962 mit 2405kmh2\,405\,\frac{\text{km}}{\text{h}} mehr als doppelte Schallgeschwindigkeit!

Schallgeschwindigkeit – Gewitter

Es gibt ein schönes Alltagsbeispiel, in dem du dein Wissen über die Schallgeschwindigkeit in der Luft nutzen kannst. Wenn ein Gewitter aufzieht, ist es gut zu wissen, wie weit es noch entfernt ist. Wenn es in weiter Entfernung blitzt, seht ihr den Blitz sofort, weil das Licht sich extrem schnell ausbreitet. Der Schall braucht in Luft allerdings eine ganze Weile, bis er dich erreicht, weil er nur etwa 343343 Meter pro Sekunde zurücklegt.
Wenn du also die Sekunden zwischen Blitz und Donner zählst, kannst du die Entfernung mithilfe der Schallgeschwindigkeit berechnen. Näherungsweise kannst du die Sekunden durch drei teilen, und erhältst so die ungefähre Entfernung in Kilometern.

Schlaue Idee
Wenn du bei einem Gewitter die Zeit zwischen Blitz und Donner zählst, kannst du die Entfernung zum Blitz berechnen. Jede Sekunde entspricht etwa 343343 Metern, da so schnell Schall in der Luft reist. Alle drei Sekunden legt das Donnergeräusch also etwa einen Kilometer zurück.

Schallgeschwindigkeit Vakuum

Vielleicht hast du schon einmal einen Science-Fiction-Film gesehen, der im Weltraum spielt, und dich gefragt: „Wie hoch ist die Schallgeschwindigkeit im Vakuum?“. Die Antwort ist einfach: Im Vakuum gibt es keinen Schall, also auch keine Schallgeschwindigkeit. Du hast heute schon gelernt, dass Schallwellen Druckschwankungen sind, die sich in einem Medium ausbreiten. Im Vakuum gibt es aber keine Teilchen, und deswegen kann es auch keine Schallwellen geben und man kann im Weltall keine Schallgeschwindigkeit messen. Wenn man im Weltall ohne Helm überleben könnte, würde man also nichts hören. Wenn du also das nächste Mal einen Science-Fiction-Film siehst, in dem es im Weltall bei Explosionen laut knallt, kannst du deinen Eltern sagen, dass das in Wahrheit gar nicht sein kann.

Ausblick – das lernst du nach Schallgeschwindigkeit in unterschiedlichen Medien

Erkunde als nächstes den Dopplereffekt. Schau dir außerdem die Erzeugung und Ausbreitung von Schall, Reflexion und Beugung sowie das Thema Mechanische Schwingungen an und erhalte spannende Einblicke, wie Schall erzeugt und wahrgenommen wird. Mach dich bereit für eine akustische Reise durch die Physik!

Zusammenfassung der Schallgeschwindigkeit

  • Bei Schall handelt es sich um Druckschwankungen, die sich wellenförmig ausbreiten. Deswegen spricht man auch von Schallwellen.
  • Die Schallgeschwindigkeit ist die Geschwindigkeit, mit der sich diese Druckschwankungen ausbreiten. Sie bestimmt also, wie lange es dauert, bis ein Geräusch aus einer Schallquelle bei dir ankommt.
  • Experimentell lässt sich die Schallgeschwindigkeit mithilfe einer Laufzeitbestimmung ermitteln: cSchall=stLaufc_\text{Schall}=\dfrac{s}{t_\text{Lauf}}
  • In Flüssigkeiten und Gasen ist die Schallgeschwindigkeit abhängig vom adiabatischen Kompressionsmodul KK und der Dichte ϱ\varrho:
    cSchall=Kϱc_\text{Schall}=\sqrt{\dfrac{K}{\varrho}}
  • Für ein ideales Gas der absoluten Temperatur TT und der molaren Masse MM mit ff Freiheitsgraden wird daraus dann:
    f+2fRTM\sqrt{\dfrac{f+2}{f} \cdot \dfrac{R\,T}{M}}

Dabei ist RR die allgemeine Gaskonstante.

Häufig gestellte Fragen zu Thema Schallgeschwindigkeit

Schallgeschwindigkeit in unterschiedlichen Medien Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Lerntext Schallgeschwindigkeit in unterschiedlichen Medien kannst du es wiederholen und üben.
Bewertung

Ø 3.8 / 129 Bewertungen
Die Autor*innen
Avatar
sofatutor Team
Schallgeschwindigkeit in unterschiedlichen Medien
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse - 9. Klasse - 10. Klasse
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.280

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.182

Lernvideos

38.668

Übungen

33.478

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden