Dioden, LEDs und Photodioden
Die Diode ist ein einfaches Halbleiterbauelement, das in vielen elektronischen Geräten, wie Ladegeräten, LEDs und Solarzellen verwendet wird. Was besteht sie aus und kann sie in Sperrrichtung Strom leiten? Lerne das und wie die Kennlinie einer Diode den Zusammenhang zwischen Stromstärke und angelegter Spannung zeigt.

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Dioden, LEDs und Photodioden
Diode – Definition
Die Diode ist eines der am einfachsten aufgebauten und am häufigsten verwendeten Halbleiterbauelemente. Sie zählt zu den Grundbausteinen bei so gut wie jeder Digitaltechnik. Deswegen benutzt du auch jeden Tag Geräte, die ohne Dioden gar nicht funktionieren würden. Sie sind zum Beispiel in Netzteilen, Handys, Lampen und Solarzellen verbaut. Aber was ist eine Diode überhaupt für ein Bauteil?
Eine Diode ist ein elektronisches Bauteil mit zwei Elektroden, der Anode und der Kathode. Üblicherweise bestehen sie aus Halbleitermaterialien. Dabei wird der elektrische Strom nur in eine Richtung durchgelassen (Durchlassrichtung). Die andere Polungsmöglichkeit ist die sogenannte Sperrrichtung.
Diode – Aufbau
Eine Diode besteht aus zwei Schichten, die aus unterschiedlich dotierten Halbleitern bestehen. Man spricht deswegen auch von einer Halbleiterdiode. Eine Seite ist positiv dotiert und hat freie Bindungsplätze, die auch Löcher genannt werden und wie positive Ladungsträger beschrieben werden können (p‑Dotierung). Die andere Seite ist negativ dotiert. Diese Seite hat einen Überschuss an frei beweglichen Elektronen (n‑Dotierung).
An der Grenze zwischen diesen beiden Schichten können einige Elektronen von der n‑Schicht in die p‑Schicht wandern, wo sie mit Löchern rekombinieren. Gleichzeitig können auch Löcher von der p‑Schicht in die n‑Schicht wandern, wo sie von Elektronen aufgefüllt werden. Dadurch entsteht in der p‑Schicht ein Bereich, der gegenüber seiner Umgebung negativ geladen ist. In der n‑Schicht entsteht ein Bereich, der gegenüber seiner Umgebung positiv geladen ist. Zusammen ergeben diese Bereiche einen Bereich um die Grenzschicht, der Raumladungszone oder Sperrschicht genannt wird.
Der Name Sperrschicht kommt daher, dass durch die Raumladung keine frei beweglichen Ladungsträger mehr in diesem Bereich vorhanden sind. Dieser Bereich sorgt für die besondere Charakteristik der Diode.
Diode – Anode oder Kathode?
Dasjenige Ende der Diode, das sich in der p‑Schicht befindet, heißt Anode. Das Ende in der n‑Schicht heißt Kathode.
Wusstest du schon?
Photodioden sind ein wichtiger Bestandteil von Solarzellen. Mithilfe dieser Dioden kann Sonnenlicht direkt in elektrische Energie umgewandelt werden. Hast du schon einmal daran gedacht, dass die Energie, die deinen Taschenrechner oder deine Solarlampe antreibt, direkt von der Sonne kommt? Durch Dioden wird Sonnenenergie nutzbar gemacht!
Diode – Schaltzeichen
Das Schaltzeichen für eine Diode ist in der folgenden Abbildung das untere Symbol. Darüber sind die entsprechenden Schichten eingezeichnet. Ist der Pluspol der Spannungsquelle an das breitere Ende des Schaltzeichens angeschlossen, funktioniert die Diode in Durchlassrichtung, andernfalls in Sperrrichtung.
Diode – Funktion
Die Funktionsweise der Halbleiterdiode können wir verstehen, wenn wir eine Spannungsquelle anschließen. Als Erstes betrachten wir den folgenden Fall: Der Minuspol wird an die p‑Schicht der Diode angeschlossen und der Pluspol an die n‑Schicht. Die Löcher in der p‑Schicht werden vom Minuspol angezogen, während die Elektronen in der n‑Schicht vom Pluspol angezogen werden. Dadurch vergrößert sich die Sperrschicht.
In dieser Polung kann die Diode keinen Strom leiten. Man nennt diese Polung daher auch Sperrrichtung.
Jetzt polen wir die Spannungsquelle um, schließen also den Minuspol an die n‑Schicht und den Pluspol an die p‑Schicht. So wird das Feld der Sperrschicht verkleinert, da der Minuspol die Elektronen in Richtung der Grenzschicht drückt und der Pluspol die Löcher. Ist die Spannung groß genug, wird die Sperrschicht überwunden und die Diode leitet Strom. Die Diode ist so in Durchlassrichtung gepolt.
Kontrovers diskutiert:
Wissenschaftlerinnen und Wissenschaftler diskutieren, ob Dioden auf Basis organischer Materialien (sogenannte OLEDs) die herkömmlichen Halbleiterdioden in Zukunft vollständig ersetzen könnten. Einige Forscherinnen und Forscher heben die Flexibilität und das Potenzial für transparente Displays hervor. Andere sehen die begrenzte Lebensdauer und die komplexe Herstellung als große Hindernisse. Was denkst du?
Diode – Kennlinie
Die Eigenschaften eines elektronischen Bauteils kann man an seiner Kennlinie ablesen. In der Kennlinie einer Halbleiterdiode ist die Stromstärke über der angelegten Spannung aufgetragen. Wir betrachten im Folgenden eine Diode, die an eine Spannungsquelle angeschlossen ist. Die Diode hat als Schaltzeichen ein Dreieck, dessen Spitze auf eine gerade Linie zeigt. Dadurch wird auch direkt die Durchlassrichtung symbolisiert.
Ist die Diode in Sperrrichtung geschaltet, kann kaum Strom fließen. Das sieht man an der linken Seite der Kennlinie, also bei negativer Spannung. Wird die Spannung in Sperrrichtung zu groß, können Atombindungen zerstört werden, wodurch schlagartig ein sehr hoher Strom fließt. Man nennt die Spannung, bei der es zu diesem starken Anstieg kommt, auch Durchbruchspannung oder Sperrspannung. Diese Spannung gehört zu den Kenndaten einer Diode und ist immer angegeben. Die Diode kann bei dieser Spannung nämlich zerstört werden.
Schaltet man die Diode in Durchlassrichtung, fließt zunächst auch wenig Strom. Erst ab Erreichen der Schwellspannung wird die Sperrschicht überwunden und der Stromfluss steigt an. Bei Siliziumdioden liegt diese Spannung bei etwa . Die Diode verhält sich dann wie ein Leiter. Deswegen muss man auch immer einen weiteren Verbraucher, zum Beispiel einen Widerstand oder eine Lampe, in Reihe schalten – sonst handelt es sich um einen Kurzschluss.
Diode – Anwendungen
Halbleiterdioden werden häufig in Wechselstromkreisen genutzt, wie zum Beispiel bei Ladegeräten für Handys. Das deutsche Stromnetz liefert eine Wechselspannung von bei einer Frequenz von . Die Polung der Spannung wechselt also ‑mal pro Sekunde. Das Handy benötigt zum Laden allerdings eine Gleichspannung. Schaltet man eine Diode in den Stromkreis, wandelt sie die Wechselspannung in eine Gleichspannung um, indem sie nur die geeignete Polung durchlässt und die andere sperrt.
LED
Ein weiteres Anwendungsbeispiel für Dioden sind LEDs
Photodiode
Photodioden funktionieren genau andersherum: Sie erzeugen aus einfallendem Licht einer bestimmten Wellenlänge Energie in Form von elektrischem Strom. Nach diesem Prinzip funktionieren auch Solarzellen. Es handelt sich dabei um Fotodioden mit sehr großer Oberfläche. Sie bestehen aus einer p‑Schicht, die von einer sehr dünnen n-Schicht bedeckt ist. Wenn Sonnenlicht auf die Solarzelle trifft, kann die Strahlung die n‑Schicht durchqueren und erreicht die Grenzschicht. Dort werden neue Elektron‑Loch‑Paare erzeugt, also freie Löcher und Elektronen. Durch die Raumladungszone an der Grenzschicht werden sie getrennt: Die Elektronen wandern in die n‑Schicht und die Löcher in die p‑Schicht. Trifft genügend Licht auf die Solarzelle, wird so eine Spannung aufgebaut.
Schottky‑Diode
Eine Schottky‑Diode verwendet statt eines Übergangs zweier Halbleiter einen Metall‑Halbleiter‑Übergang. Dies hat eine wesentlich kleinere Schaltzeit zur Folge. Damit ist die Zeit gemeint, die es dauert, bis beim Wechsel von Durchlass‑ zur Sperrrichtung der Strom tatsächlich gesperrt wird.
Daneben gibt es noch mehr weitere Diodentypen, zum Beispiel Laserdioden.
Ausblick – das lernst du nach Dioden, LEDs und Photodioden
Erlange weitere faszinierende Einblicke in die Halbleitertechnologie! Lerne mehr über Halbleiterelektronik und insbesondere, wie Transistoren und Solarzellen funktionieren. Verstehe, wie Dioden in alltäglichen Geräten genutzt werden – bist du bereit für das nächste Level?
Zusammenfassung – Dioden, LEDs und Photodioden
- Eine Diode ist ein zweipoliges elektronisches Bauteil, das den Strom nur in eine Richtung fließen lässt, in die andere Richtung sperrt die Diode.
- Ein Betrieb der Diode in Sperrrichtung über die sogenannte Durchbruchspannung hinaus führt zur Zerstörung der Diode.
- Es gibt verschiedene Bauformen von Dioden mit verschiedenen Funktionen. LEDs geben z. B. Licht ab, Fotodioden wandeln Lichtenergie in Spannung um.
Häufig gestellte Fragen zum Thema Dioden, LEDs und Photodioden
Transkript Dioden, LEDs und Photodioden
Eine geeignete Dotierung ist die Grundlage für viele Halbleiterbauelemente. Dabei werden gezielt die Art und Menge der Ladungsträger voreingestellt. Die einfachsten Halbleiterelemente sind Dioden, sie werden unter anderem in Netzteilen, LED-Lampen und Solarzellen verwendet. Eine Diode erlaubt einen Stromfluss in nur eine Richtung. Bei Dioden liegen eine p-dotierte und eine n-dotierte Schicht nebeneinander. Im Grenzbereich, in dem die Schichten aneinanderstoßen, können einige Elektronen aus dem n-Leiter in den p-Leiter wandern und dort mit Löchern rekombinieren. Gleichzeitig wandern einige Löcher aus dem p-Leiter in den n-Leiter und werden dort von Elektronen gefüllt. Im n-Leiter bleibt eine positive Restladung zurück und im p-Leiter eine negative. Diese Raumladung verhindert eine weitere Rekombination. Es entsteht ein Bereich, indem kaum bewegliche Ladungsträger vorhanden sind, die Sperrschicht. Legt man nun eine Spannung an, bei der der Minuspol am p-Leiter und der Pluspol am n-Leiter anliegt, werden die beweglichen Ladungsträger zu den Enden der Diode hingezogen. Die Sperrschicht in der Mitte wird also noch größer. Die Diode sperrt, es fließt kein Strom. Das nennt man die Sperrrichtung. Kehrt man die Polung um, so verkleinert sich die Sperrschicht. Wenn die Spannung groß genug ist um die Raumladung zu überwinden, fließt Strom. In dieser Durchlassrichtung verhält sich die Diode dann wie ein Leiter. Die Eigenschaften von einfachen Halbleiterbauteilen kann man anhand von sogenannten „Kennlinien“ graphisch darstellen. Im Diagramm werden Stromstärken und Spannungen auf der x- und der y-Achse aufgetragen. Im Fall der Diode wird auf der x-Achse die angelegte Spannung dargestellt und auf der y-Achse die zugehörige Stromstärke. So kann man ablesen, was mit der Diode passiert, wenn man am Regelknopf der Spannungsversorgung dreht. Wenn die Diode in Sperrrichtung geschaltet ist, kann kaum Strom fließen. Das ist der Sperrbereich. Wird die Spannung in Sperrrichtung zu groß, werden die Bindungen der Atome zu zerstört und es sind plötzlich Ladungsträger in großer Zahl vorhanden. Die Stromstärke steigt rasant an und die Diode wird zerstört. Diese Spannung heißt „Durchbruchspannung“. Ist die Diode in Durchlassrichtung geschaltet, fließt ebenfalls nur wenig Strom, bis die Schwellspannung erreicht ist. Diese liegt bei Siliziumdioden bei circa 0,6 bis 0,7 Volt. Die Schwellspannung ist nötig, um den Sperrbereich der Diode zu überwinden. Danach fällt über der Diode die gleiche Spannung ab, egal wie groß die Stromstärke ist. Tatsächlich verhält sich die Diode dann wie ein Leiter. Ein Stromkreis mit einer in Durchlassrichtung gepolten Diode muss daher immer mit einem Widerstand begrenzt werden, sonst handelt es sich um einen Kurzschluss der die Diode zerstört. Dioden sind vor allem in Wechselspannungskreisen nützlich. Ein Netzgerät für ein Handy muss die 230 Volt Wechselspannung in eine Gleichspannung mit nur wenigen Volt umwandeln. Das erreicht man durch geschicktes Verschalten von Dioden. Bei einer Wechselspannung wechselt ständig die Polung der Spannung. Ist eine Diode im Stromkreis, so lässt sie nur die Spannung mit einer geeigneten Polung durch. Bei der umgekehrten Polung sperrt sie. Damit ist der erste Schritt zum Erhalten einer Gleichspannung gemacht. Durch die fortwährende Rekombination von Elektronen und Löchern in den Halbleiterbauelementen werden Netzteile allerdings mit der Zeit warm, wenn nicht sogar heiß. Eine besondere Form von Dioden sind die „LEDs“: Light Emitting Diods. Sobald ein Elektron und ein Loch rekombinieren wird hier die Energie nicht als Wärme, sondern in Form von sichtbarem Licht frei. Unterschiedliche Materialien geben Licht mit verschiedenen Wellenlängen ab. Daher können LEDs in diversen Farben leuchten. Siliziumdioden geben Strahlungen im unsichtbaren Infrarotbereich ab und werden zum Beispiel in Fernbedienungen eingesetzt. Galliumarsenid leuchtet rot. Galliumphosphid leuchtet grün. Kombiniert man verschiedene LEDs miteinander, können die LED-Lampen auch weiß leuchten. Diese verbrauchen weitaus weniger Energie als herkömmliche Glühbirnen. LEDs geben Licht ab. Photodioden funktionieren umgekehrt, sie wandeln einfallendes Licht in elektrische Energie um. Ein Beispiel dafür sind die Solarzellen. Eine Solarzelle ist eine Diode mit einer riesengroßen Fläche. Unten befindet sich eine p-dotierte Schicht, darüber die n-dotierte Schicht, die so hauchdünn ist, dass das Sonnenlicht durch sie hindurch fallen kann. Ist die Solarzelle dem Sonnenlicht ausgesetzt, so liefern die einfallenden Photonen genug Energie um zusätzliche Elektronen aus ihrer festen Bindung zu schlagen. Im n-/p-Grenzbereich entstehen neue Elektronen-Lochpaare. Die Elektronen werden von der positiven Raumladung in den n-Leiter gezogen. Die Löcher von der negativen Raumladung in den p-Leiter. Nach und nach baut sich so eine Spannung auf, die Leerlaufspannung. Die Solarzelle ist nun eine Spannungsquelle mit einem Plus- und einem Minuspol. Verbindet man die Pole zu einem Stromkreis, kann man damit ein Gerät betreiben. Eine Photodiode kann auch die Funktion eines Schalters haben. Wenn Licht einfällt leitet sie, wenn es dunkel ist unterbricht sie. In einem Raster angeordnet bilden Photodioden das Herzstück einer jeden Digitalkamera, den Photosensor. Jede Diode auf dem Raster gibt die Information, ob und wieviel Licht vorhanden ist, als einen spezifischen Pixel in das digitale Bild weiter.
Dioden, LEDs und Photodioden Übung
9.326
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.202
Lernvideos
38.693
Übungen
33.502
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
Ojeh, mein Fehler sorry!
Gutes Video, nur ist die Durchlassrichtung falsch dargestellt.
Die ist nämlich immer vom der Anode (p-dotierte Schicht)
Zur Kathode(n-dotierte Schicht)
Oder bin ich da falsch ?