30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Dioden, LEDs und Transistoren – Leitungsvorgänge 05:01 min

Textversion des Videos

Transkript Dioden, LEDs und Transistoren – Leitungsvorgänge

Um die elektrische Leitung verstehen zu können, blicken wir ins Innere der Materie. Atome bestehen aus einem sehr kleinen positiv geladenen Kern und einer Hülle aus negativ geladenen Elektronen. Bestimmte Anordnung dieser Hülle, die so genannten Edelgaskonfigurationen sind sehr stabil. Die Atome reagieren in der Regel nicht mit anderen Atomen. Befinden sich in der Hülle jenseits einer solchen Konfiguration noch weitere Elektronen, versuchen diese durch Reaktion mit anderen Atomen eine Edelgaskonfiguration zu erreichen. Beide Reaktionspartner legen dafür ihre äußeren Elektronen zusammen. Darauf beruht die chemische Bindung. Besonders reaktionsfreudig sind Atome, bei denen ein Elektron reicht, um in der Verbindung wieder eine Edelgaskonfiguration zu erreichen. Die Zahl der für Verbindungen zur Verfügung stehenden Elektronen gibt die Wertigkeit oder Valenz des Atoms an. Diese Elektronen heißen auch Valenzelektronen. Die Anzahl der Valenzelektronen spielt aber nicht nur bei chemischen Reaktionen eine Rolle, sie beeinflusst auch andere Eigenschaften einer Substanz. Metalle sind ein- oder zweiwertig. Sie sind bei Zimmertemperatur in der Regel Festkörper. Die Atome sind in einem Gitter angeordnet. Die Valenzelektronen sind nur schwach gebunden und können sich innerhalb des Gitters recht frei bewegen. Schließt man eine Stromquelle an den Leiter, so werden die negativ geladenen freibeweglichen Elektronen vom Pluspol angezogen und bewegen sich auf ihn zu. Daher sind Metalle elektrischer Leiter. Bei Isolatoren handelt es sich meist um chemische Verbindungen verschiedener Atome, in denen die Valenzelektronen in den Bindungen festgehalten werden. Ein guter Isolator ist beispielsweise Glas. Es besteht hauptsächlich aus Siliziumdioxid. Hier verbinden sich Siliziumatome und Sauerstoffatome zu einer stabilen Kristallstruktur. Die Elektronen sind jeweils als festes Paar gebunden. Auch wenn man eine Spannung angelegt, gibt es keine freibeweglichen Elektronen, die zum Pluspol gezogen werden könnten. Deshalb fließt auch kein Strom. Während die Verbindung Siliziumdioxid ein Isolator ist, gilt das Element Silizium als Paradebeispiel für die dritte Variante von Materialien. Silizium ist ein Halbleiter. Die englische Bezeichnung Silicon ist übrigens namensgebend für das berühmte Silicon Valley in Kalifornien, die Geburtsstätte visionärer Computertechnologien. Halbleiter befinden sich im Periodensystem zwischen den Metallen und den Nichtmetallen. Sie weisen sowohl Eigenschaften von Leitern als auch von Nichtleitern auf. Ihre Atome haben in der Regel vier Elektronen in der Valenzhülle. Für eine stabile Verbindung müssten sie vier Elektronen abgeben oder vier aufnehmen. Betrachten wir ein Siliziumkristall genauer. Hier teilen sich die Siliziumatome die Elektronen, so dass jedes Atom acht Elektronen zu haben scheint. In sehr kaltem Zustand sind keine freien Elektronen vorhanden. Steigt die Temperatur, schwingen die Atome stärker um ihre Ruhelage. So können sich einzelne Elektronen aus ihrer Bindung lösen und als bewegliche Ladungsträger zur Verfügung stehen. Überall wo sich ein Elektron gelöst hat, entsteht ein Loch, eine positiv geladene Stelle. Während man bei Metallen nur die freien Elektronen hat, entstehen bei Halbleitern immer Paare von frei beweglichen negativen Elektronen und positiven Löchern. Diesen Vorgang nennt man Paarbildung. Legt man eine Spannung an, wandern die frei beweglichen Elektronen zum Pluspol. Und auch die positiven Löcher wandern, da von den Nachbaratomen wieder Elektronen in die Löcher nachrücken und dadurch neue freimachen. Das Besetzen von Löchern durch Elektronen nennt man Rekombination. Dabei wird Energie frei. Der gesamte Vorgang der Elektronenwanderung und des Wanderns der Löcher im reinen Silizium wird Eigenleitung genannt.