Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Die elektrische Leistung

Elektrische Leistung in der Physik definiert die Umsetzung von Energie durch einen Verbraucher. Sie wird in Watt gemessen. Eine höhere Leistung bedeutet eine größere Energieumwandlung. Um Energie zu sparen, wähle Geräte mit einer niedrigeren Leistung für einen höheren Wirkungsgrad. Interessiert? Dies und mehr findest du im folgenden Text.

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.6 / 17 Bewertungen
Die Autor*innen
Avatar
Team Digital
Die elektrische Leistung
lernst du in der 7. Klasse - 8. Klasse

Die elektrische Leistung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Die elektrische Leistung kannst du es wiederholen und üben.
  • Vervollständige die Tabelle mit den richtigen Formelzeichen und Einheiten.

    Tipps

    Die elektrische Leistung wird in der Einheit Watt $(\text{W})$ angegeben.

    Die Stromstärke hat das Formelzeichen $I$.

    Lösung

    Formelzeichen und Einheiten werden den physikalischen Größen wie folgt zugeordnet:


    Stromstärke:

    • Formelzeichen: $I$
    • Einheit: $\text{A}$ (Ampere)

    Spannung:

    • Formelzeichen: $U$
    • Einheit: $\text{V}$ (Volt)

    Widerstand:

    • Formelzeichen: $R$
    • Einheit: $\Omega$ (Omega)

    Leistung:

    • Formelzeichen: $P$
    • Einheit: $\text{W}$ (Watt)

  • Definiere die physikalischen Größen Stromstärke, Spannung, Widerstand und Leistung.

    Tipps

    Die Formel zur Berechnung der elektrischen Leistung lautet:

    $P = \dfrac{\Delta E}{\Delta t}$

    Die Formel zur Berechnung der Stromstärke lautet:

    $I = \dfrac{\Delta Q}{\Delta t}$

    Lösung

    Folgende Satzhälften musst du miteinander verbinden, um die physikalischen Größen zu definieren. Diese Definitionen können aus den mathematischen Beschreibungen dieser Größen abgeleitet werden.


    1. Die elektrische Leistung $P$ gibt an, wie viel Energie $\Delta E$ in der Zeit $\Delta t$ an einem elektrischen Bauteil umgesetzt wird.

    Daher lautet die allgemeine Formel zur Berechnung der Leistung:

    $P = \dfrac{\Delta E}{\Delta t}$


    2. Die elektrische Stromstärke $I$ gibt an, welche Ladungsmenge $\Delta Q$ in der Zeit $\Delta t$ durch den Querschnitt eines Leiters fließt.

    Deshalb lautet die allgemeine Formel zur Berechnung der Stromstärke:

    $I = \dfrac{\Delta Q}{\Delta t}$


    3. Die elektrische Spannung $U$ gibt an, welche Energie $\Delta E$ von der Spannungsquelle pro Ladungsmenge $\Delta Q$ zur Verfügung gestellt wird.

    Darum lautet die allgemeine Formel zur Berechnung der Spannung:

    $U = \dfrac{\Delta E}{\Delta Q}$


    4. Der elektrische Widerstand $R$ gibt an, wie stark der Stromfluss $I$ bei einer konstanten Spannung $U$ durch ein elektrisches Bauteil behindert wird.

    Deswegen lautet die allgemeine Formel zur Berechnung des Widerstandes:

    $R = \dfrac{U}{I}$

  • Bestimme den Wert des Widerstandes, der im Föhn integriert ist.

    Tipps

    Der Aufgabenstellung lassen sich folgende Größen entnehmen:

    • elektrische Leistung des Föhns: $P= 1\,150~\text{W}$
    • Spannung: $U= 230~\text{V}$

    In dieser Aufgabe ist der elektrische Widerstand $R$ gesucht.

    Welche Formeln für die elektrische Leistung $P$ kennst du, bei denen die Leistung $P$ mit der Spannung $U$ und dem Widerstand $R$ zusammenhängt?

    Der Zusammenhang zwischen der elektrischen Leistung $P$, der Spannung $U$ und dem Widerstand $R$ lautet:

    $ P = \dfrac{U^2}{R}$

    Forme die Gleichung nach $R$ um und setze die Werte ein.

    Lösung

    In der Aufgabe sind folgende Größen gegeben:

    • elektrische Leistung des Föhns: $P= 1\,150~\text{W}$
    • Spannung $U= 230~\text{V}$

    Gesucht ist der elektrische Widerstand $R$.

    Wir wissen, dass für die elektrische Leistung die Formel $P= U \cdot I$ gilt. Mit dem Ohmschen Gesetz $R = \frac{U}{I}$ lässt sich ein Zusammenhang herleiten, der nur die Spannung $U$ und den Widerstand $R$ beinhaltet:

    $P = \dfrac{U^2}{R}$

    Formen wir diese Gleichung nun nach $R$ um und setzen dann die Werte ein, erhalten wir:

    $P = \dfrac{U^2}{R} ~ \Leftrightarrow ~ R = \dfrac{U^2}{P}$

    $\Rightarrow R = \dfrac{(230~\text{V})^2}{1\,150~\text{W}} = \dfrac{52\,900~\text{V}^2}{1\,150~\text{W}} = 46~\Omega$

    Der Föhn von Andrew hat also einen Widerstand von $R= 46~\Omega$, sobald er angeschlossen und in Betrieb ist.

  • Berechne die Stromstärke und den Widerstand einer Energiesparlampe.

    Tipps

    Die Formel für die Leistung $P$ lautet:

    $P = {U \cdot I}$

    Aus dem Ohmschen Gesetz lässt sich ein mathematischer Zusammenhang für den elektrischen Widerstand $R$ herleiten:

    $R = \dfrac{U}{I}$

    Lösung

    Mit den gegebenen Größen kannst du zunächst die Stromstärke $\boldsymbol{I}$ berechnen. Es gilt:

    $I = \dfrac{P}{U}$

    $\Rightarrow I = \dfrac{9~\text{W}}{230~\text{V}} = 0{,}039~\text{A}$

    Nun kannst du den Widerstand $\boldsymbol{R}$ der Energiesparlampe mit dem Ohmschen Gesetz berechnen:

    $R = \dfrac{U}{I}$

    $\Rightarrow R = \dfrac{230~\text{V}}{0{,}039~\text{A}} = 5\,897~\Omega$

    Das sind die richtigen Werte für die Stromstärke $I$ und den Widerstand $R$.

  • Gib an, welche Formeln zur Berechnung der elektrischen Leistung genutzt werden können.

    Tipps

    Es ist nur eine Formel richtig.

    Wenn du die korrekte Darstellung der Formel nicht mehr kennst, dann versuche, sie dir herzuleiten.

    Die allgemeine Definition der Leistung $P$ ist:

    $P = \dfrac{\Delta E}{\Delta t}$

    Für die Stromstärke $I$ gilt:

    $I = \dfrac{\Delta Q}{\Delta t}$

    Außerdem können wir die Spannung $U$ auch so darstellen:

    $U = \dfrac{\Delta E}{\Delta Q}$

    Lösung

    Wenn du diese Gleichungen kennst, dann kannst du die Formeln zur Berechnung der Leistung daraus ableiten:

    $P = \dfrac{\Delta E}{\Delta t}$

    $R = \dfrac{U}{I}$

    $I = \dfrac{\Delta Q}{\Delta t}$

    $U = \dfrac{\Delta E}{\Delta Q}$

    Multiplizierst du einfach $U$ und $I$, erhältst du folgende Gleichung:

    $U \cdot I = \dfrac{\Delta E}{\Delta Q} \cdot \dfrac{\Delta Q}{\Delta t}$

    $\Delta Q$ kannst du kürzen. Dann erhältst du:

    $P = U \cdot I = \dfrac{\Delta E}{\Delta t}$

    Damit hast du die richtige Formel zur Berechnung der Leistung:

    $P = U \cdot I$

  • Berechne die elektrische Leistung des Elektromotors für den Aufzug.

    Tipps

    Wir wissen, dass die elektrische Leistung $P$ über diesen Zusammenhang definiert ist:

    $P = \dfrac{\Delta E}{\Delta t}$

    Die elektrische Energie, die der Elektromotor braucht, ist gleich der potentiellen Energie, die aufgebracht wird, um die Person in den ersten Stock zu bringen.

    Lösung

    Wir wissen, dass die elektrische Leistung $P$ über diesen Zusammenhang definiert ist:

    $P = \dfrac{\Delta E}{\Delta t}$

    Damit steht die elektrische Leistung im Allgemeinen für elektrische Energie $\Delta E$, die in einem bestimmten Zeitraum $\Delta t$ aufgebracht wird. Diese Energie muss in unserem Beispiel aufgrund des Energieerhaltungssatzes aber genauso groß wie die potentielle Energie $E_{pot}$ sein, da der Elektromotor einen Aufzug antreibt, der eine Person auf eine bestimmte Höhe $h$ bringt. Das heißt, wir können in die Formel die potentielle Energie $\Delta E_{pot}$ einsetzen und erhalten:

    $P = \dfrac{\Delta E_{pot}}{\Delta t} = \dfrac{m \cdot g \cdot h}{\Delta t}$

    Mit dem Ortsfaktor $g \approx 10~\dfrac{\text{m}}{\text{s}^2}$ und den anderen gegebenen Werten erhalten wir:

    $P = \dfrac{20~\text{kg} \cdot 10~\frac{\text{m}}{\text{s}^2} \cdot 3~\text{m}}{5~\text{s}} = 120~\text{W}$

    Somit beträgt die elektrische Leistung des Elektromotors für den Aufzug $120$ Watt.