Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Was ist Temperatur?

Schaust du manchmal die Wetterprognose mit deinen Eltern an? Oft erwähnen sie die gefühlte Temperatur, die deutlich von der gemessenen Temperatur abweichen kann. Die Temperatur kann absolut oder gefühlt sein, aber beide brauchen eine präzise Messung? Weißt du schon, wie du verschiedene Temperaturen messen kannst? Lies weiter und du wirst es herausfinden!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 172 Bewertungen
Die Autor*innen
Avatar
Team Digital
Was ist Temperatur?
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Was ist Temperatur? Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Was ist Temperatur? kannst du es wiederholen und üben.
  • Gib wieder, was Temperatur ist.

    Tipps

    Wärmeenergie fließt immer von warm zu kalt.

    Unsere Wärmeempfindung stellt den Austausch von Wärmeenergie mit der Umgebung dar.

    Die innere Energie spiegelt die Temperatur eines Körpers wider.

    Lösung

    Die Temperatur eines Körpers ist eine objektive Messgröße, die angibt, wie warm oder kalt der Körper ist. Objektiv heißt, dass die Temperatur sich mit geeigneten Messinstrumenten wie Thermometern unabhängig von der beobachtenden Person bestimmen lässt.

    Die Temperatur eines Körpers spiegelt die innere Energie wider, die in der ungeordneten Bewegung der Teilchen steckt: Je höher die Temperatur eines Körpers, desto schneller bewegen sich seine Teilchen durchschnittlich. Dies ist auch der Grund dafür, dass es Aggregatzustandsänderungen gibt: Schwingen die ortsfesten Teilchen eines festen Körpers zum Beispiel zu stark, löst sich seine feste Struktur auf und er schmilzt. Die Teilchen sind dann frei gegeneinander verschiebbar.

    Menschliche Wärmeempfindung basiert auf dem Austausch von Wärmeenergie mit der Umgebung. Wärmeenergie fließt immer vom wärmeren zum kälteren Körper.

    Gino bibbert, weil seine Körpertemperatur höher ist als die des Meereswassers. Wärmeenergie fließt also von ihm ins Wasser. Der menschliche Körper strebt aber danach, eine konstante Temperatur aufrechtzuerhalten – in Ginos Fall durch Muskelkontraktionen (Bibbern).

  • Beschreibe, wie sich die Teilchen in den jeweiligen Stoffen bewegen.

    Tipps

    Bei Festkörpern sind die Teilchen ortsfest.

    Bei Gasen wirken sehr geringe Kräfte zwischen den Teilchen.

    Lösung

    $\Rightarrow$ Festkörper schwingen auf der Stelle.

    In einem Festkörper sind die Teilchen – meist Atome oder Moleküle – in einem festen Gitter angeordnet. Trotz dieser festen Anordnung bewegen sich die Teilchen ständig aufgrund ihrer thermischen Energie. Diese Bewegung äußert sich als Schwingung um ihre Gleichgewichtspositionen. Die Teilchen schwingen um einen Mittelpunkt, wobei die Amplitude ihrer Schwingung von der Temperatur abhängt. In einem Festkörper sind die Teilchen in den Bindungskräften gefangen, die sie am Verlassen ihrer Positionen hindern. Diese Eigenschaft sorgt für die charakteristische Form eines Festkörpers und seine starre Struktur.


    $\Rightarrow$ Flüssigkeiten verschieben sich gegeneinander.

    In einer Flüssigkeit sind die Teilchen weniger regelmäßig angeordnet als in einem Festkörper: Die Teilchen sind immer noch durch anziehende Kräfte miteinander verbunden, aber sie haben genügend Energie, um sich gegeneinanderzubewegen. Die Bewegung der Teilchen in Flüssigkeiten ermöglicht es ihnen, die Positionen zu wechseln, indem sie sich durch die Flüssigkeit bewegen. Dies ermöglicht Flüssigkeiten, die Form des Behälters anzunehmen, in dem sie sich befinden, und sich an die Oberflächen anzupassen. Die Bewegung der Teilchen in Flüssigkeiten ist schneller und weniger eingeschränkt als in Festkörpern, wodurch Flüssigkeiten fließfähig sind.


    $\Rightarrow$ Gase bewegen sich im ganzen Raum.

    In einem Gas bewegen sich die Teilchen frei im gesamten verfügbaren Raum. Die Teilchen bewegen sich mit hoher Geschwindigkeit in unterschiedlichen Richtungen und prallen ständig aneinander und an die Wände des Behälters. Die Bewegung der Gasteilchen ist intensiver als die von Festkörpern oder Flüssigkeiten, da die thermische Energie der Teilchen groß genug ist, um die Bindungskräfte zwischen ihnen zu überwinden. Gase haben keine feste Form, sondern nehmen die Form und den Raum des Behälters an, in dem sie sich befinden, und dehnen sich aus.

  • Erkläre die Fachbegriffe.

    Tipps

    Diese Messung der Temperatur ist objektiv, da sie unabhängig von den individuellen Empfindungen von Personen ist.

    Wärmeenergie fließt von einem Körper mit höherer Temperatur zu einem Körper mit niedrigerer Temperatur, bis beide Temperaturen sich angleichen.

    Wärmeausdehnung beschreibt das Phänomen, bei dem sich die Abmessungen eines Körpers aufgrund einer Erhöhung seiner Temperatur vergrößern.

    Je höher die Temperatur, desto intensiver ist die Bewegung der Teilchen.

    Lösung

    • Temperatur ist die objektive Messgröße dafür, wie warm oder kalt ein Körper ist. Sie wird mit einem Thermometer gemessen.
    Begründung: Die Temperatur eines Körpers gibt an, wie warm oder kalt er ist. Sie ist eine quantitative Messgröße, die mithilfe eines Thermometers gemessen werden kann. Diese Messung ist objektiv, da sie unabhängig von den individuellen Empfindungen von Personen ist.


    • Wärmeenergie ist die Energie, die zwischen Körpern aufgrund von Temperaturunterschieden fließt.
    Begründung: Wärmeenergie ist die Energie, die wegen Temperaturunterschieden zwischen Körpern fließt. Sie bewegt sich immer vom wärmeren Körper zum kälteren, was zu einer Ausgleichsbewegung führt. Dieser Fluss von Energie ist der Grund für den Temperaturaustausch zwischen verschiedenen Objekten.


    • Wärmeausdehnung bedeutet die Zunahme des Volumens oder der Länge eines Körpers aufgrund einer erhöhten Temperatur.
    Begründung: Wärmeausdehnung beschreibt das Phänomen, bei dem sich die Abmessungen eines Körpers wegen einer Erhöhung seiner Temperatur vergrößern. Die erhöhte Temperatur bewirkt eine gesteigerte Teilchenbewegung, was dazu führt, dass die Teilchen weiter voneinander entfernt sind und somit der Körper insgesamt expandiert.


    • Teilchenbewegung ist die Bewegung der Atome oder Moleküle in einem Material aufgrund ihrer thermischen Energie.
    Begründung: Die Teilchenbewegung beschreibt die Bewegung der Atome oder Moleküle in einem Material. Diese Bewegung ist eng mit der thermischen Energie verbunden, die wegen der Temperatur vorhanden ist: Je höher die Temperatur, desto intensiver ist die Bewegung der Teilchen, was zu unterschiedlichen Aggregatzuständen und Verhaltensweisen der Materialien führt.


    • Innere Energie ist die Energie, die in den Bewegungen der Teilchen eines Körpers steckt.
    Begründung: Die innere Energie eines Körpers ist die Gesamtenergie, die in den Bewegungen und Wechselwirkungen seiner Teilchen vorhanden ist. Diese Energie umfasst sowohl die kinetische Energie der Teilchenbewegung als auch die potenzielle Energie der intermolekularen Kräfte. Die innere Energie beeinflusst die Temperatur und das Verhalten des Körpers bei Wärmezufuhr oder Wärmeabfuhr.

  • Erkläre den Unterscheid zwischen Wärme und Temperatur.

    Tipps

    Obwohl die gleiche Menge an Wärmeenergie übertragen wird, können die Temperaturänderungen in den beiden Behältern unterschiedlich sein.

    Eine intensive Eigenschaft ist eine physikalische Eigenschaft eines Körpers, deren Betrag unabhängig von der Größe des Körpers ist.

    Wenn du einen ein Meter langen Stab teilst, dann sind die beiden Hälften nicht mehr einen Meter lang – Länge ist dementsprechend eine extensive Größe.

    Wenn du aber von einem Liter der Temperatur $\vartheta=\pu{20 ^\circ C}$ die Hälfte abschöpfst, dann haben beide Hälften immer noch die gleiche Temperatur: $\vartheta=\pu{20 ^\circ C}$.

    Aufgrund des unterschiedlichen Volumens der beiden Behälter wird es im kleinen Behälter zu einer größeren Temperaturerhöhung kommen.

    Lösung

    In beiden Behältern wird eine Kerze mit dem gleichen Energieinhalt verwendet, um das Wasser im großen Behälter und das Wasser im kleinen Behälter zu erwärmen.

    Da beiden Behältern die gleiche Wärmemenge zugeführt wurde, ist auch in beiden Behältern die Zunahme der inneren Energie gleich. Jedoch unterscheidet sich die Änderung der Temperatur in den beiden Behältern:

    Aufgrund der unterschiedlichen Wassermenge in den beiden Behältern wird die gleiche Menge an thermischer Energie im kleinen Behälter zu einer größeren Temperaturerhöhung führen als im großen Behälter.

    Das bedeutet, dass die Temperaturänderung, die durch die gleiche Menge an übertragener Wärme verursacht wird, in Abhängigkeit von der Größe des Systems unterschiedlich sein kann.

    Würden wir nun eine der Wassermengen in zwei gleiche Hälften teilen, würde sich ihre Temperatur deshalb nicht ändern.

    Hier wird deutlich, dass die Temperatur eine intensive Eigenschaft ist, die angibt, wie heiß oder kalt ein Körper ist. Sie ist unabhängig von der Größe des Systems.

    Die Wärme hingegen ist eine extensive Eigenschaft und beschreibt die übertragene Energie. Sie beeinflusst abhängig von der Menge des Materials die Temperaturänderung.

    In diesem Experiment wird gezeigt, dass, obwohl die gleiche Menge an Wärmeenergie übertragen wird, die Temperaturänderungen in den beiden Behältern unterschiedlich sein können, abhängig von der Größe des Systems. Dies verdeutlicht den Unterschied zwischen Temperatur und Wärme in der Physik.

  • Entscheide, welche Aussagen in Bezug auf die Temperatur korrekt sind.

    Tipps

    Die Temperatur eines Körpers ist eine Maßzahl dafür, wie warm oder kalt ein Körper ist.

    Die Temperatur ist ein Maß für die durchschnittliche kinetische Energie der Teilchen. Diese Energie steigt mit der Temperatur: Die Teilchen bewegen sich schneller.

    Lösung

    Die Temperatur misst die Farbe eines Körpers.

    $\Rightarrow$ Diese Aussage ist falsch.

    Die Temperatur eines Körpers ist eine Messgröße dafür, wie warm oder kalt der Körper ist. Sie hat keine direkte Verbindung zur Farbe eines Körpers.


    Wärmeenergie fließt vom kälteren zum wärmeren Körper.

    $\Rightarrow$ Diese Aussage ist falsch.

    Gemäß dem zweiten Hauptsatz der Thermodynamik fließt Wärmeenergie immer von einem Körper höherer Temperatur zu einem Körper niedrigerer Temperatur. Dieser Energiefluss ermöglicht den Temperaturausgleich zwischen den Körpern.


    Je höher die Temperatur, desto langsamer bewegen sich die Teilchen.

    $\Rightarrow$ Diese Aussage ist falsch.

    Bei höheren Temperaturen bewegen sich die Teilchen tatsächlich schneller. Die Temperatur ist ein Maß für die durchschnittliche kinetische Energie der Teilchen. Diese Energie steigt mit der Temperatur, was zu schnelleren Bewegungen führt.


    Die Temperatur ist ein Maß für die innere Energie eines Körpers.

    $\Rightarrow$ Diese Aussage ist richtig.

    Die Temperatur eines Körpers ist direkt mit der inneren Energie der Teilchen in diesem Körper verbunden: Bei höheren Temperaturen haben die Teilchen mehr kinetische Energie und bewegen sich schneller, was zu einer höheren Gesamtenergie im System führt.

  • Berechne die erforderliche Energie zum Aufheizen.

    Tipps

    $80~\ell$ Wasser haben eine Masse von $80~\text{kg}$. Es gilt:

    $m=80~\text{kg}$

    Die spezifische Wärmekapazität von Wasser ist:

    $c=4\,186~\dfrac{\text{J}}{{\text{kg}}\cdot {^\circ\text{C}}}$

    Die Temperaturänderung $\Delta \vartheta$ lässt sich so berechnen:

    $\Delta \vartheta=40~{^\circ}\text{C} - 16~{^\circ}\text{C}=24~{^\circ}\text{C}$

    Lösung

    Um die erforderliche Energie für das Aufheizen des Badewassers zu berechnen, verwenden wir die Formel für die Wärmemenge:

    $Q=c \cdot m\cdot \Delta \vartheta$

    Dabei ist $Q$ die Wärmemenge in Joule, $c$ die spezifische Wärmekapazität des Wassers in $\frac{\text{J}}{\text{kg}~\cdot~{^\circ}\text{C}}$, $m$ die Masse des Wassers in Kilogramm ($1~\ell$ Wasser hat eine Masse von $1~\text{kg}$) und $\Delta \vartheta$ die Temperaturdifferenz in Grad Celsius (Endtemperatur minus Anfangstemperatur).


    Folgende Größen sind gegeben:

    • $c=4\,186~\dfrac{\text{J}}{\text{kg}\cdot {^\circ}\text{C}}$
    • $m=80~\text{kg}$
    • $\Delta \vartheta=40~{^\circ}\text{C} - 16~{^\circ}\text{C}=24~{^\circ}\text{C}$

    Jetzt setzen wir die Werte in die Formel ein:

    $Q=4\,186~\dfrac{\text{J}}{\text{kg}\cdot {^\circ}\text{C}} \cdot 80~\text{kg}\cdot 24~{^\circ}\text{C}=8\,037\,120~\text{J}$

    Die erforderliche Energie beträgt also $8\,037\,120~\text{J}$, was auch als $8{,}037~\text{MJ}$ (Megajoule) geschrieben werden kann.

    Das erscheint für dich im ersten Moment vielleicht sehr viel, jedoch betragen die Kosten für die benötigte Energiemenge ungefähr $70$ Cent, also noch nicht einmal einen Euro!