30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Längenänderung fester Körper 08:14 min

Textversion des Videos

Transkript Längenänderung fester Körper

Hallo, ich bin Stefan und möchte mit dir das Thema Längenänderung fester Körper bearbeiten. Hierzu beginnen wir zunächst mit einem anschaulichen Beispiel. Vielleicht hast du es ja schon gehört, dass nicht nur Pflanzen, Tiere und Menschen wachsen können, auch Gebäude können wachsen. Und das möchte ich am Beispiel des Berliner Fernsehturms zeigen. Die Höhe an einem Wintertag beträgt dreihundertachtundsechzig Meter und bis zum Sommer wird er an extrem heißen Tagen um bis zu achtzehn Zentimeter gewachsen sein. Jedoch schrumpft er auch zum Winter wieder um denselben Wert. Ein Glück, dass du nicht der Fernsehturm bist, sonst würdest du ja nie groß werden können. Um zu verstehen, was mit dem Fernsehturm eigentlich geschieht, müssen wir uns noch einmal kurz damit auseinandersetzen, was ein Festkörper und seine Temperatur eigentlich ist. Anschließend erkläre ich euch anhand eines homogenen Metallrohres, was bei der Längenänderung eigentlich geschieht und warum sich feste Körper ausdehnen. Ich habe natürlich nicht im Sommer und im Winter den Fernsehturm gemessen, also muss es auch einen Weg geben das zu berechnen. Dazu benötigen wir dann den Längenausdehnungskoeffizienten. Und nachdem du dann in der Lage bist die Längenausdehnung zu berechnen, zeige ich dir als Anwendung das Bimetall und die Dehnungsfuge. Na dann mal los. Was ist eigentlich ein Festkörper und was bedeutet seine Temperatur im Teilchenmodell? Festkörper sind Körper im festen Aggregatzustand. Hier haben die Atome einen festen Platz, von dem sie nicht so einfach wegkommen. Sie können lediglich etwas hin- und herschwingen, kommen jedoch nie weit von ihrer Ruhelage weg. Die Temperatur ist ein Maß dafür, wie sehr die Atome um ihre Ruhelage schwingen. Je wärmer es ist, umso mehr Energie besitzen die Atome und schwingen somit heftiger. Die Atome benötigen mehr Platz, je größer deren Beweglichkeit ist. Wenn nun alle Atome ein Stückchen mehr Platz für sich benötigen, dann muss der Festkörper größer werden. Aber wie genau wirkt sich die erhöhte Beweglichkeit der Atome, beziehungsweise die Temperaturänderung auf die Längenänderung des gesamten Festkörpers aus? Um dies festzustellen betrachten wir folgenden Versuchsaufbau. Ein Stahlrohr von einem Meter Länge ist an einem Ende fest eingespannt und liegt mit dem anderen Ende auf einer Walze, welche mit einem Zeiger verbunden ist. Wird der Stab länger, dreht sich die Walze und der Zeiger bewegt sich. Der Zeigerausschlag ist proportional zur Längenänderung Delta l. Dies ist nötig, da die Längenänderung von Metallen sehr klein ist und wir sie anders nicht genau messen könnten. Um die Temperaturänderung des Rohres zu regulieren, wird Wasser oder Wasserdampf durch das Rohr geleitet. Wir erstellen ein Delta T-Delta l-Diagramm, um den Zeigerausschlag bei verschiedenen Temperaturen darstellen zu können. Hierzu zeichnen wir auf der x-Achse die Temperaturänderung in Kelvin und auf der y-Achse die Längenänderung in Millimeter ein. Man erkennt einen proportionalen Zusammenhang zwischen den beiden Größen. Das heißt, der Graph stellt eine Gerade dar, deren Steigung die Proportionalitätskonstante ist. Atome benötigen also bei größerer Beweglichkeit mehr Abstand zu ihren Nachbarn als bei niedrigeren Temperaturen. Als nächstes schauen wir uns das Verhalten eines halb so langen Stahlrohres an. Hier beginnen genau die Hälfte der ursprünglichen Atome stärker zu schwingen und benötigen mehr Platz. Somit ist auch die Längenänderung des Stahlrohres beziehungsweise die Steigung der Gerade auch nur halb so groß. Die Längenänderung hängt von der Anfangslänge l1 des Festkörpers ab. Wiederholen wir nun das Experiment mit einem anderen Metall, zum Beispiel Aluminium. Es ergibt sich eine Gerade mit einer größeren Steigung. Die Längenausdehnung ist also auch “materialabhängig”. Das liegt daran, dass unterschiedliche Atome auch unterschiedlich viel Platz benötigen, wenn sie schwingen. Ähnliche Experimente zeigen, dass die Proportionalität für viele andere Metalle, Stein und Glas gilt. Bei großen Temperaturen und Temperaturunterschieden gibt es allerdings Abweichungen von dieser Proportionalität. Um die Längenänderung berechnen zu können, müssen wir unsere Feststellungen noch in Formeln fassen. Die Versuche ergaben, dass Längenänderung Delta l und Temperaturänderung Delta T proportional zueinander sind. Das heißt, Delta l = K * Delta T, wobei K die Proportionalitätskonstante und der Steigung der Geraden im Delta T-Diagramm entspricht. Diese Proportionalitätskonstante hängt ab von der Anfangslänge l1 und hat einen “materialabhängigen” Anteil. Der “materialabhängige” Anteil heißt Längenausdehnungskoeffizient. Sein Formelzeichen ist Alpha. Es gilt: K = l1 * Alpha. Insgesamt ergibt sich also für die Längenänderung eines Festkörpers Delta l = l1 * d * Delta T. Der Längenausdehnungskoeffizient Alpha zeigt an, wie stark sich ein Stoff beim Erhöhen der Temperatur ausdehnt. Der Längenausdehnungskoeffizient ist eine Materialkonstante und stets positiv. Seine Einheit ist eins durch Kelvin. Je größer Alpha ist, umso stärker dehnt sich ein Stoff beim Erwärmen aus. Hier siehst du ein paar Beispiele für den Längenausdehnungskoeffizienten einiger Materialien. Es dehnt sich also Silber sehr viel stärker aus als Glas. Zum Abschluss wollen wir uns noch ein, zwei Anwendungen dieses Prinzips anschauen. Das Bimetall und die Dehnungsfuge. Interessant wird es, wenn eine Verbindung von zwei Materialien erwärmt wird, deren Längenausdehnungskoeffizient sich stark unterscheidet. In diesem Beispiel Platin und Silber. Da diese beiden Materialien Metalle sind, wird der Verbund derer auch “Bimetall” genannt. Silber dehnt sich beim Erwärmen bedeutend stärker aus als Platin. Es treten somit Verspannungen auf, die im schlimmsten Fall die Verbindung zerstören können. Das Zurückhalten der Ausdehnung an der Grenzschicht tritt jedoch nicht auf der anderen Seite des Silbers auf. Das Bimetall verformt sich. Auf diese Art und Weise können zum Beispiel Temperatursensoren in Bügeleisen funktionieren. Wenn sich das Bimetall weit genug gebogen hat, kann ein elektrischer Schaltkreis geschlossen oder unterbrochen werden. Ungewollt kann der Effekt jedoch auch auftreten. Diese Konstruktionen sind dann “temperaturanfällig” und können bei hoher Temperatur verbiegen oder brechen. Um Zerstörung von Bauwerken zu umgehen, können Dehnungsfugen eingesetzt werden. Dadurch haben die Materialien genug Platz, um sich an sehr heißen Tagen ungestört ausdehnen zu können. Dieses hast du bestimmt schon mal bei einer Brücke gesehen, wie hier auf diesem Foto. So, nun hast du es fast geschafft. Lass uns nun noch schnell zusammenfassen, was wir heute gelernt haben: Atome benötigen einen größeren Abstand zueinander, wenn sich die Temperatur erhöht. Damit dehnen sich Festkörper beim Erwärmen aus. Die Längenänderung ist linear von der Temperaturänderung abhängig. Ein “materialspezifischer” Teil des Proportionalitätsfaktors wird als “Längenausdehnungskoeffizient Alpha” bezeichnet. Dieser Koeffizient ist stets positiv. Eine praktische Anwendungsmöglichkeit um Temperatursensoren bauen zu können, ist ein “Bimetallstreifen”. Und Dehnungsfugen verhindern, dass Brücken oder Bauwerke kaputt gehen. Das war es dann auch schon wieder bei Physik mit Stefan. Ich hoffe, du siehst mich bald wieder. Bis dahin, tschüss.

6 Kommentare
  1. 87f003946341aa2894586f19ac8f8b1f

    krass

    Von rouven s., vor 4 Monaten
  2. Default

    Cool

    Von Malermellmann, vor mehr als einem Jahr
  3. Default

    wurde mich sehr über ein video freuen bei dem erklährt wird wie man dies bereschnet :)

    Von Tequila Hacienda, vor fast 4 Jahren
  4. Default

    Dieses Video hilft mir sehr weiter :)

    Von Dilagshan, vor etwa 4 Jahren
  5. Default

    das hilft mir nichtmal einen Milllimeter weiter

    Von Dilagshan, vor etwa 4 Jahren
  1. Default

    Die Lösung der Abschlussfrage passt nicht, oder? Müsste 900,78mm und nicht 900,87mm lauten. Zahlendreher :)

    Von M Niedenfuehr, vor mehr als 4 Jahren
Mehr Kommentare