Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Aufgaben zu Feldstärke und Spannung

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.5 / 8 Bewertungen
Die Autor*innen
Avatar
Wolfgang Tews
Aufgaben zu Feldstärke und Spannung
lernst du in der 11. Klasse - 13. Klasse

Aufgaben zu Feldstärke und Spannung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Aufgaben zu Feldstärke und Spannung kannst du es wiederholen und üben.
  • Tipps

    Im Plattenkondensator soll ein homogenes elektrisches Feld herrschen.

    Die Kapazität hängt auch von der elektrischen Feldkonstante ab.

    In einem starken elektrischen Feld wirkt eine stärkere Kraft auf eine Ladung, als in einem schwächeren.

    Lösung

    Die physikalischen Größen im homogenen elektrischen Feld, wie es in einem Plattenkondensator herrschen soll, können wir mit einigen Formel bestimmen.

    Die Kraft die auf eine Ladung wirkt, ist über das Produkt aus der elektrischen Feldstärke $E$ und dem Ladungsbetrag $q$ zu bestimmen. Es gilt also $F_{el} = E \cdot q$. In einem starken elektrischen Feld wirkt also eine starke Kraft auf eine Probeladung $q$. Den Einfluss der Gewichtskraft im Schwerefeld der Erde kannst du dabei vernachlässigen, da die elektrische Kraft sehr viel größer ist als die Gewichtskraft.

    Die elektrische Feldstärke $E$ lässt sich über den Quotienten aus Spannung $U$ und Plattenabstand $d$ bestimmen. Es gilt $ E = \frac{U}{d}$. Die Einheit kann dementsprechend in $\frac{V}{m}$ angegeben werden. Beachte, dass dieses eine Modellvorstellung ist. Auch eine Gewitterwolke über dem Erdboden kann als Plattenkondensator idealisiert werden. Es gibt einen Abstand $d$ und eine Spannung $U$. Insofern gibt es auch hier ein elektrisches Feld.

    Die Ladung, welche auf einen Kondensator aufgebracht werden kann, lässt sich mit $C = \epsilon_0 \cdot \frac{A}{d} $ ermitteln. Dieser Bauteilkennwert wird auch als Kapazität bezeichnet. Dabei ist $\epsilon_0$ die elektrische Feldkonstante, $A$ die Fläche der Platten und $d$ deren Abstand.

    Die Energie, welche auf einem Kondensator gespeichert werden kann, ist abhängig von der Kapazität $C$ und der angelegten Spannung $U$. Hier gilt $ W = \frac{1}{2} \cdot C \cdot U^2$.

    Mit diesen Formeln kannst du nun einige wichtige Berechnungen am Kondensator durchführen.

  • Tipps

    Die Ladung eines Elektrons beträgt $1,6 \cdot 10^{-19} C$.

    Die Masse eines Elektrons beträgt $9,1 \cdot 10^{-31} kg$.

    $F_{el} = q \cdot E$.

    Lösung

    Um die Kraft auf ein geladenes Teilchen im elektrischen Feld zu bestimmen, wenden wir die Formel $ F = q \cdot E$ an.

    Darin ist $q$ die Ladung in $C$ und $E$ die elektrische Feldstärke in $\frac{N}{C}$. Wie du siehst, ergibt sich bei der Berechnung von $F_{el}$ die Einheit $N$. Für die Gewichtskraft gilt $F_g = m \cdot g$. Darin ist $m$ die Masse des Teilchens im elektrischen Feld und $g$ die Erdbeschleunigung. Generell ist die Masse der Teilchen im Kondensator sehr viel geringer als deren elektrische Ladung. Die spezifische Ladung eines Elektrons etwa beträgt $ \frac{q}{m} = \frac{1,6 \cdot 10^{-19} C}{9,1 \cdot 10^{-31} kg} = 1,76 \cdot 10^{11} \frac{C}{kg}$.

    So kommt es, dass auch die Kraft $F_{el}$ sehr viel größer ist als die Kraft $F_g$. Aus diesem Grund wird die Gewichtskraft bei der Berechnung am Kondensator in der Regel vernachlässigt.

    Betrachten wir ein Beispiel. Ein Elektron befindet sich im Kondensator. Die Ladung des Elektrons beträgt $ q = 1,6 \cdot 10^{-19}C$. Die elektrische Feldstärke betrage $E = 200 \frac{N}{C}$. Gesucht ist die Kraft $F_{el}$ auf das Elektron. Diese ergibt sich nun mit der Formel $F_{el} = 3,2 \cdot 10^{-17}N$.

  • Tipps

    In einem Kondensator herrscht ein elektrisches Feld.

    Die Kapazität des Kondensators ist mit dessen Plattenfläche und Plattenabstand berechenbar.

    Das Modell eines Kondensators ist dann auf reale Probleme anwendbar, wenn man für diese eine Kapazität bestimmen kann und ein elektrisches Feld herrscht.

    Lösung

    Betrachten wir zunächst die Eigenschaften eines Kondensators: In einem Kondensator wird Energie in einem elektrischen Feld gespeichert. Der Betrag der speicherbaren Energie hängt neben der angelegten Spannung auch von der Kapazität des Kondensators ab. Diese ist abhängig von der Geometrie des Kondensators und wird durch den Quotienten aus Plattenfläche durch Plattenabstand festgelegt. Halten wir fest: Ein Kondensator ist ein elektrisches Bauteil, in dem sich zwei Flächen $A$ im Abstand $d$ gegenüber stehen. Dazu muss eine Spannung zwischen den Platten angelegt sein, sodass ein elektrisches Feld im Kondensator entsteht.

    Auch eine Gewitterwolke hat eine feststellbare Geometrie. Diese schwebt im Abstand $d$ über einer Fläche $A$. Dazu existiert eine Spannung $U$, denn die Gewitterwolke ist ja negativ aufgeladen und der Erdboden ist elektrisch neutral. In der Realität ist die Gewitterwolke natürlich nicht überall gleich weit von der Erdoberfläche entfernt. Auch die Spannung ist nicht überall konstant. In der Vereinfachung funktioniert dieses Modell jedoch gut.

    Es herrschen also Bedingungen, die vergleichbar sind, mit denen im Plattenkondensator. Aus diesem Grund, kann man die Berechnungen am Kondensator auch auf das Gewitterwolke-Boden-Modell anwenden.

  • Tipps

    $\epsilon_0 = 8,85 \cdot 10^{-12}$

    $W = \frac{1}{2} \cdot c \cdot U^2$

    $E = \frac{U}{d}$

    $C = \epsilon_0 \cdot \frac{A}{d}$

    Lösung

    Um die Aufgaben zu lösen, müssen wir mehrere Formeln verwenden.

    Betrachten wir zunächst die Berechnung der elektrischen Feldstärke $E$. Es gilt $ E = \frac{U}{d}$. Darin ist $U$ die Spannung und $d$ der Plattenabstand. Liegt etwa eine Spannung $U = 1 kV$ über einem Plattenabstand von $d = 2,5 cm$ an, so beträgt die elektrische Feldstärke $E = \frac{1 kV}{0,025m} = 40 \frac{kV}{m}$.

    Um die Kapazität eines Kondensators zu berechnen, benutzen wir die Formel $C = \epsilon_0 \cdot \frac{A}{d}$. Hier ist $\epsilon_0$ die elektrische Feldkonstante, $A$ ist die Fläche der Kondensatorplatten und $d$ der Plattenabstand. Schauen wir uns ein Beispiel an : Ein Kondensator habe eine Plattenfläche von $A = 0,09 m^2$ und einen Plattenabstand von $d = 16 mm$. Einsetzen liefert $C = 8,85 \cdot 10^{-12} \cdot \frac{0,09m}{0,016m}= 4,98 \cdot 10^{-11} F$.

    Die umfangreichste Berechnung wird benötigt, um die Energie im Kondensator $W$ zu bestimmen. Es gilt $W = \frac{1}{2} \cdot C \cdot U^2$. Darin ist $C$ die Kapazität des Kondensators, wobei für $C$ weiterhin gilt $ C = \epsilon_0 \cdot \frac{A}{d}$. $U$ gibt die Spannung an, die zwischen den Kondensatorplatten anliegt. Betrachten wir ein Beispiel: Ein Kondensator habe eine Plattenfläche von $A = 0,08 m^2$ und einen Plattenabstand von $d = 0,3 mm$. An diesen ist die Spannung $U = 750V$ angelegt. Einsetzen liefert : $W = \frac{1}{2} \cdot \epsilon_0 \cdot \frac{A}{d} \cdot (750V)^2 = E = 6,64 \cdot 10^{-4}J $. Es können also maximal $0,664 mJ$ in diesem elektrischen Feld gespeichert werden.

  • Tipps

    Wir betrachten einen Kondensator ohne Dielektrikum.

    Die Einheit von $E$ ist $\frac{V}{m}$.

    Lösung

    Unter den gezeigten Formel finden sich einige, die korrekt angegeben sind. Andere hingegen sind falsch.

    Für die Spannung $U$ gilt $ U = E \cdot d$. Im Umkehrschluss muss die Formel $E = \frac{U}{A}$ falsch sein. Denn die Spannung hängt tatsächlich vom Plattenabstand $d$ und der elektrischen Feldstärke $E$ ab, nicht aber von der Fläche $A$.

    Um die Kapazität zu bestimmen, können wir die Formel $C = \epsilon_0 \cdot \frac{A}{d}$ verwenden. Darin sind die Fläche $A$, der Plattenabstand $d$ und die elektrische Feldkonstante $\epsilon_0$ zu finden. Die Formel $C = \epsilon_r \cdot \frac{A}{d}$ unterscheidet sich zwar nur gering von der richtigen, ist aber dennoch falsch. Die Dielektrizitätskonstante $\epsilon_r$ wird hier nämlich nicht berücksichtigt.

    Die Energie, welche auf einem Kondensator gespeichert werden kann, ist mit $W = \frac{1}{2} \cdot C \cdot U^2$ zu ermitteln. Auch hier können wir im Umkehrschluss festhalten, dass $W = \frac{1}{4} \cdot C \cdot U^2$ falsch sein muss. Es muss der Faktor $\frac{1}{2}$ verwendet werden. Das hängt mit dem Quadrat über $U$ zusammen.

    Nun kannst du sicher die richtigen von den falschen Formeln unterscheiden und die Berechnungen am Kondensator werden ein wenig leichter.

  • Tipps

    $ C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$

    $W = \frac{1}{2} \cdot C \cdot U^2$

    Lösung

    Um die Energiezustände der Kondensatoren vergleichen zu können, müssen wir deren Kapazitäten sowie die angelegte Spannung kennen und in die Formel zur Berechnung der aufgebrachten Energie $W$ einsetzen.

    Für $W$ gilt dabei $W = \frac{1}{2} \cdot C \cdot U^2$.

    Für den Fall, dass die Kapazität bekannt ist, können wir $W$ ohne Umwege berechnen.

    Ist $C$ jedoch nicht direkt bekannt, können wir die Kapazität anhand der Formel $ C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$ bestimmen.

    Nun vergleichen wir die Energiebeträge, die sich für die linken und rechten Partner ergeben und verbinde diese, deren Energiebeträge sich gleichen.

    Schauen wir uns ein Beispiel an.

    Für $C = 8 pF$ und eine Spannung von $2 kV$ ergibt sich mit der eben gezeigten Formel $W = \frac{1}{2} \cdot 8 pF \cdot (2.000V)^2 = 1,6 \cdot 10^{-5} J$. Dies entspricht einer Spannung von $3651,48 V$ an einem Kondensator mit $C = 2,4 pF$.

    Analog kannst du nun sicher die weiteren Paare finden. Viel Erfolg !

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.224

Lernvideos

38.691

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden