Elektrische Feldstärke E
Das elektrische Feld entsteht aufgrund von Ladungen und bestimmt die Kraft auf eine Ladung. Die Feldstärke $\vec{E}$ beschreibt diese Kraft unabhängig von der Ladungsgröße. Erfahre in diesem Text, wie man die Feldstärke berechnet und welche Einheiten gelten. Interessiert? Dies und vieles mehr findest du im folgenden Text!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Coulombsches Gesetz

Konzept der Feldlinien – elektrisches Feld

Elektrische Feldstärke E

Elektrisches Feld punktförmiger Ladungen

Elektrisches Potential – Spannung zwischen zwei Punkten im elektrischen Feld

Spannung und Energie

Aufgaben zu Feldstärke und Spannung

Flächenladungsdichte

Plattenkondensator – homogenes elektrisches Feld

Plattenkondensator – Kapazität

Plattenkondensator – Lade- und Entladevorgang

Plattenkondensator (Übungsvideo)

Dielektrikum und seine Permittivität

Zwei Kondensatoren

Rechnen mit Kondensatoren

Energie des elektrischen Feldes eines Plattenkondensators

Arbeit und Energie im elektrischen Feld

Faraday und der Elektromagnetismus – es war einmal Forscher und Erfinder (Folge 14)

Elektrische Flussdichte – beim Plattenkondensator
Elektrische Feldstärke E Übung
-
Beschreibe die elektrische Feldstärke.
Tipps$\vec r$ ist ein Vektor und hat somit mehrere Koordinaten. Wie viele Koordinaten hat ein Zeitpunkt?
Hat die Coulomb-Kraft eher etwas mit Ladungen oder eher etwas mit Massen zu tun?
LösungDie elektrische Feldstärke wird geschrieben als $\vec E(\vec r)$. Das $\vec r$ ist ein Vektor und hat somit mehrere Dimensionen. Es handelt sich also um einen Ort und nicht um einen Zeitpunkt.
Die Feldstärke gibt die Stärke des Feldes an, wie man am Begriff "Feldstärke" gut erkennen kann. Das elektrische Feld ist ein Kraftfeld. Es äußert sich durch die Ausübung von Kräften auf Ladungen.
-
Vergleiche Schwerkraft und Coulombkraft.
TippsWelche Vorzeichen können Ladungen haben? Welche Vorzeichen können Massen haben?
Was bedeutet das Vorzeichen der Kraft für die Richtung?
$k=\frac{1}{4\pi\epsilon}$
LösungDie Formel für die Coulombkraft zwischen zwei Punktladungen ist:
$F(r)=k\frac{Q_1Q_2}{r_{12}^2}$.
Die Konstante $k=\frac{1}{4\pi\epsilon}$ mit $\epsilon$ der elektrischen Feldkonstante.
Ladungen treten mit positiven oder negativen Vorzeichen auf. Daher wird die Coulombkraft positiv oder negativ, je nachdem, ob die Ladungen $Q_1$ und $Q_2$ gleiche oder entgegen gesetzte Vorzeichen haben. Ein positives Vorzeichen der Kraft bedeutet, dass sie anziehend ist.
Die Gleichung für die Gravitation zweier Punktmassen ist der Gleichung für die Coulombkraft zweier Punktladungen sehr ähnlich. Man muss die Ladungen $Q_1$ und $Q_2$ nur durch die Massen $m_1$ und $m_2$ vertauschen und die Konstante $k$ durch die Gravitationskonstante $G$.
$F(r)=G\frac{m_1m_2}{r_{12}^2}$.
Die Massen haben immer ein positives Vorzeichen. Die Schwerkraft ist also immer anziehend.
Berechnet man Coulombkraft und Gravitationskraft zum Beispiel für ein Wasserstoffatom, dann findet man heraus, dass die Coulombkraft zwischen Kern und Elektron um einen Faktor $2,3\cdot 10^{39}$ größer ist als die Schwerkraft zwischen Kern und Elektron.
-
Berechne die Feldstärke.
TippsErinnere dich an die Definition der Feldstärke.
LösungGegeben ist die Ladung $Q=4\,C$ und die Kraft auf die Ladung $F=16\,N$. Gesucht ist die elektrische Feldstärke am Ort der Ladung.
Die Gleichung für die elektrische Feldstärke ist $E=\frac{F}{Q}$. Wir setzen ein und erhalten:
$E=\frac{F}{Q}=\frac{16\,N}{4\,C}=4\,\frac{N}{C}$.
Erweitert man die Einheit mit Metern $m$, ergibt sich:
$E=4\,\frac{N\cdot m}{C\cdot m}=4\,\frac{J}{C\cdot m}$, da $N\cdot m$ Joule ist.
Joule pro Coulomb wiederum ist Volt. Also:
$E=4\,\frac{V}{m}$.
-
Bringe Schwerkraft und Coulombkraft ins Gleichgewicht.
TippsErinnere dich an die Formel für die Coulombkraft zwischen zwei Punktladungen.
Die Formel für die Schwerkraft zwischen zwei Körpern der Massen $m_1$ und $m_2$ im Abstand $r$ ist
$F=G\frac{m_1m_2}{r^2}$.
LösungGegeben sind die elektrische Feldkonstante, die Massen und Ladungen. Gesucht ist der Wert, den die Gravitationskonstante haben müsste, damit im Wasserstoffatom die Schwerkraft und die Coulombkraft des Kerns auf das Elektron gleich groß sind.
Die Gleichung für die Coulombkraft ist:
$F=-\frac{1}{4\pi\epsilon}\frac{Q_1Q_2}{r^2}$.
Die Gleichung für die Schwerkraft ist:
$F=G\frac{m_1m_2}{r^2}$.
Wenn wir die beiden Kräfte gleich setzen erhalten wir:
$\frac{1}{4\pi\epsilon}\frac{Q_1\cdot Q_2}{r^2}=G\frac{m_1\cdot m_2}{r^2}$.
Jetzt multiplizieren wir auf beiden Seiten mit $r^2$ und teilen durch $m_1\cdot m_2$. Dann erhalten wir
$G=-\frac{1}{4\pi\epsilon}\frac{ Q_1\cdot Q_2}{ m_1\cdot m_2}$.
Setzen wir ein für die Ladung des Elektrons $Q_1=-e$ und für die Ladung des Kerns $Q_2=e$ mit $e\approx 1,602\cdot 10^{-19}\,C$, für die elektrische Feldkonstante $\epsilon\approx 8,854 \cdot 10^{-12}\frac{F}{m}$, für die Elektronenmasse $m_1\approx 9,11\cdot 10^{-31}\,kg$ und für die Protonenmasse $m_2=1,67\cdot 10^{-27}\,kg$, dann ergibt sich:
$G=\frac{1}{4\cdot 3,14\cdot 8,854 \cdot 10^{-12}\frac{F}{m}}\frac{1,602\cdot 10^{-19}\,C)^2}{9,11\cdot 10^{-31}\,kg\cdot 1,67\cdot 10^{-27}\,kg}=15\cdot 10^{-28}\frac{m\cdot C^2}{F\cdot kg^2}$.
Für die Einheit haben wir $\frac{m\cdot C^2}{F\cdot kg^2}=\frac{m\cdot C^2\cdot V}{C\cdot kg^2}=\frac{m\cdot J}{ kg^2}=\frac{m\cdot kg\cdot m^2}{ kg^2\cdot s^2}=\frac{m^3}{ kg\cdot s^2}$. Wir brauchen also eine Gravitationskonstante von:
$G=15\cdot 10^{-28} \frac{m^3}{ kg\cdot s^2}$, damit Schwerkraft und Coulombkraft im Wasserstoffatom gleich groß werden.
-
Identifiziere Einheiten der elektrischen Feldstärke.
TippsDie Einheit der Kraft ist Newton $N$.
Die Einheit der Ladung ist Coulomb $C$.
LösungDie elektrische Feldstärke $E$ ergibt sich aus der Kraft $F$ auf eine Ladung $Q$ als $E=\frac{F}{Q}$. Die Einheit der Kraft ist Newton $N$ und die Einheit der Ladung ist Coulomb $C$. Die Einheit der elektrischen Feldstärke ist also $[E]=\frac{N}{C}$.
Newton ist aber $N=kg\frac{m}{s^2}$, was sich aus Newtons zweitem Gesetz ergibt. Setzen wir das ein, erhalten wir:
$[E]=\frac{kg\cdot m}{s^2\cdot C}$.
Wenn wir $\frac{N}{C}$ mit Metern $m$ erweitern, finden wir:
$[E]=\frac{N\cdot m}{m \cdot C}$.
$N\cdot m=J$ das Joule und Joule pro Coulomb ist Volt. Also:
$[E]=\frac{V}{m}$.
-
Berechne die Feldstärke einer Punktladung.
TippsDie Ladung des Kerns ergibt sich aus dem Produkt Elementarladung $e$ und der Zahl der Protonen.
Erinnere dich an die Formel für das elektrische Feld eines Punktteilchens.
Ein Proton trägt die Ladung $e\approx 1,602\cdot 10^{-19}\,C$.
LösungGegeben sind die Zahl der Protonen $Z=26$ im Eisenkern und den Abstand vom Kern $r=2\cdot 10^-12\,m$. Gesucht ist die elektrische Feldstärke $E$ im Abstand $r$ vom Eisenkern.
Die Formel für das elektrische Feld ist:
$E=\frac{1}{4\pi\epsilon}\frac{Q}{r^2}$.
Die Ladung des Kerns ergibt sich als $Q=Z\cdot e$, wobei $e$ die Elementarladung $e\approx 1,602\cdot 10^{-19}\,C$ ist. Epsilon ist die elektrische Feldkonstante $\epsilon\approx 8,854 \cdot 10^{-12}\frac{F}{m}$.
Setzen wir ein erhalten wir:
$E=\frac{1}{4\cdot 3,14 \cdot 8,854 \cdot 10^{-12}\frac{F}{m}}\frac{26\cdot 1,602\cdot 10^{-19}\,C}{(2\cdot 10^{-12}\,m)^2}=9,36\cdot 10^{15}\frac{m\cdot C}{F\cdot m^2}$.
Farad ist Coulomb pro Volt. Deshalb ergibt sich für die Einheit:
$\frac{m\cdot C}{F\cdot m^2}=\frac{m\cdot C\cdot V}{C\cdot m^2}=\frac{V}{m}$.
Wir erhalten also:
$E=9,36\cdot 10^{15}\frac{V}{m}$.
Das ist eine extrem große Feldstärke. Die maximale Feldstärke in einem Plattenkondensator bei dem sich zwischen den Platten nur Luft befindet ist $3,3\cdot 10^{6}\,\frac{V}{m}$. Bei dieser Spannung kommt es zu einem Überschlag. Das heißt, Elektronen bewegen sich in einem Lichtbogen durch die Luft von der negativ geladenen zur positiv geladenen Platte des Kondensators.
Der Abstand $r$ ist übrigens der Radius der kleinsten Elektronenbahn im Bohrschen Atommodell des Eisenatoms. Es ist also eine extrem große Feldstärke nötig, um ein Atom auf seiner Bahn zu halten. Man kann sich vorstellen, dass es sich dementsprechend schnell bewegt, da es ja ziemlich leicht ist.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.211
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Elektrische Schaltungen – Übungen
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Aufgaben zur Durchschnittsgeschwindigkeit
- Lorentzkraft
- Beschleunigung
- Gravitation
- Ebbe und Flut
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohmsches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie