Elektrische Feldstärke E 07:25 min

Textversion des Videos

Transkript Elektrische Feldstärke E

Hallo und herzlich willkommen zu Physik mit Kalle. Wir wollen uns heute, wieder aus dem Gebiet Elektrizität und Magnetismus, mit der elektrischen Feldstärke E beschäftigen. Für diesen Film solltet ihr auf jeden Fall den Film über das Coulombsche Gesetz gesehen haben, in dem die Coulombkraft ausführlich erklärt wird. Und los geht's. Wir lernen heute, was die elektrische Feldstärke eigentlich ist, wie man sie berechnen kann und zum Schluss wollen wir uns noch einen Vergleich zwischen dem elektrischen Feld und dem Gravitationsfeld ansehen, indem wir die beiden dort wirkenden Kräfte vergleichen, nämlich die Coulombkraft mit der Schwerkraft. Dann mal auf zur ersten Frage. Was ist sie denn nun, die elektrische Feldstärke? Die elektrische Feldstärke ,ihr Formelzeichen ist übrigens das E, gibt an, mit welcher Stärke ein elektrisches Feld auf eine Ladung am Ort r wirkt, unabhängig davon, wie groß diese Ladung ist. Das klingt ja halbwegs einleuchtend. Jetzt wollen wir uns mal anschauen, wie man das Ganze berechnen kann. Wir haben gerade gehört: Die elektrische Feldstärke E am Ort r gibt uns die Stärke an, mit der das Feld am Ort r auf eine Ladung Q wirkt, unabhängig davon, wie groß sie ist. Ich rechne also die Coulombkraft am Ort r auf eine Ladung Q aus und teile diese dann durch die Ladung Q, und das ist auch schon alles. E=F/Q. Wir wollen uns das Ganze mal am Beispiel von 2 Punktladungen ansehen. Nehmen wir an, wir haben 2 Punktladungen. Wir nennen sie Q1 und Q2. Und wir wollen uns das Feld ansehen, das von Q2 erzeugt wird und auf Q1 wirkt. Die Feldstärke E ist dann, die Coulombkraft, die von Q2 auf Q1 wirkt, also 1÷(4πε)×[(Q1×Q2)/r2]× den Einheitsvektor mit der Richtung geteilt durch die Größe meiner Ladung, also Q1. Damit kürzen sich die Q1 aus meiner Gleichung heraus. Und damit haben wir die Feldstärke für eine Punktladung fertig berechnet. Als Nächstes wollen wir uns ansehen, welche Einheiten die Feldstärke eigentlich hat. Die Feldstärke kann man leicht, wie wir durch unsere zum Glück nicht so schwierige Formel E=F/Q sehen können, in den Einheiten Newton pro C angeben. Das kann ich umschreiben, da ja 1N die Kraft ist, die 1kg um 1m/s2 beschleunigt. Außerdem möchte ich meinen Bruch noch oben und unten jeweils mit Meter erweitern. Damit bekomme ich als Einheit der Feldstärke: E hat die Einheit (kg×m2)÷(s2÷C÷m). Keine Sorge, es wird gleich wieder übersichtlicher. Wie ihr euch vielleicht erinnert, hat die Arbeit, die für Kraft entlang eines Weges steht, die Einheit Joule (J), oder anders geschrieben Newtonmeter oder, noch komplizierter, (kg×m2)÷s2. Also kann ich in meiner Gleichung für den eingeringelten Block einfach J einsetzen. Die elektrische Spannung hat die Einheit Volt (V) und da sie angibt, wie viel Arbeit nötig ist, um eine bestimmte Ladung innerhalb eines elektrischen Feldes zu bewegen, kann man 1 V als 1J÷1C schreiben. Ich kann also den größeren markierten Bereich, der genau J÷C ist, damit einfach als V schreiben, und gelange so zur 2. Einheitenkombination, die mir die elektrische Feldstärke beschreibt, nämlich V pro m. Mehr dazu erfahrt ihr aber im Video "Spannung im elektrischen Feld". Jetzt wollen wir uns zum Schluss noch den Vergleich zwischen der Coulombkraft und der Schwerkraft ansehen. Wenn man die beiden Kräfte nebeneinander schreibt, sehen die Formeln auf den ersten Blick sehr ähnlich aus. Die Schwerkraft ist eine Konstante ×[(m1×m2)/r2], die Coulombkraft ist eine Konstante ×[(Q1×Q2)÷r2]. Es gibt aber auch bedeutende Unterschiede. Den wichtigsten Unterschied wollen wir gleich mal hinschreiben. Wie wir wissen, wirkt die Schwerkraft immer anziehend, die Coulombkraft jedoch kann - wie ihr selber sehen könnt, wenn ihr die Vorzeichen einsetzt - für 2 positive oder 2 negative Vorzeichen abstoßend wirken oder, für ein positives und ein negatives, anziehend. Um das Größenverhältnis zwischen diesen beiden Kräften besser zu verstehen, wollen wir als Beispiel mal sowohl die Schwerkraft als auch die Coulombkraft im Wasserstoffatom ausrechnen. Dann mal los mit der Schwerkraft. Die Schwerkraft im Wasserstoffatom beträgt Gravitationskonstante × (Masse des Protons × Masse des Elektrons)÷r2. r ist hier der bohrsche Radius a0, das sind übrigens 53 Picometer (pm) oder 0,53 Ångström (Å). Dann mal los mit der Schwerkraft. FG=G×(m Proton × m Elektron)÷Radius2. Das ist der Radius des Wasserstoffatoms, also der bohrsche Radius. Das kann ich alles in der Formelsammlung nachgucken und ergibt 3,63×10^-47 N. Dann mal weiter mit der Coulombkraft. F Coul=k, also in diesem Fall 1÷(4πε0) × Q1×Q2, das ist beides die Elementarladung, also e2, ÷ a02. Und das ergibt 8,24×10^-8N. Ihr seht also: Die Coulombkraft ist um ein Vielfaches stärker, ungefähr 2,3×1039 × so stark wie die Schwerkraft. 1039, also eine 1 mit 39 Nullen, nennt man übrigens auch eine Sextilliarde, und es ist eine Zahl, die man nicht oft in seinem Leben braucht. Ihr seht also: Innerhalb eines Atoms kann man die Schwerkraft komplett vernachlässigen. Alles läuft hier nur über die Coulombkraft. Falls ihr euch jetzt fragt, wie es sein kann, dass wir alle ständig die Schwerkraft spüren, aber nichts von der Coulombkraft mitbekommen, wenn sie doch so viel stärker ist, dafür gibt es eine einfache Erklärung. Große Ladungen kommen nämlich in der Natur so gut wie nie vor. Wir bestehen zwar alle aus Atomen, aber in den Atomen ist die Anzahl der Protonen meistens gleich der Anzahl der Elektronen, sodass sie nach außen hin elektrisch neutral sind. Da also die meisten Vorgänge, in denen die Coulombkraft die bestimmende Kraft ist, sich in einer Größenordnung abspielen, von der wir nichts mitbekommen,  wir aber gleichzeitig auf einem riesigen Massenball sitzen, der uns tagtäglich die Schwerkraft eindrucksvoll vor Augen führt, kann man hier leicht falsche Schlüsse ziehen. Wir wollen noch einmal wiederholen, was wir heute gelernt haben. Die elektrische Feldstärke E gibt uns an, mit welcher Stärke und in welche Richtung ein elektrisches Feld auf eine Ladung Q wirkt. Aber Vorsicht! Ob das Feld anziehend oder abstoßend wirkt, hängt vom Vorzeichen der Ladung Q ab. Die Feldstärke lässt sich leicht durch die Coulombkraft berechnen, indem man die Coulombkraft auf eine Ladung Q einfach durch Q teilt. Die elektrische Feldstärke trägt die Einheiten N÷C oder V÷m. Außerdem haben wir gesehen: Die Coulombkraft ähnelt zwar von der Formel her stark der Schwerkraft, sie kann jedoch nicht nur anziehend, sondern auch abstoßend wirken. So, das war es für schon wieder für heute. Ich hoffe, ich konnte euch helfen. Vielen Dank fürs Zuschauen, vielleicht bis zum nächsten Mal, euer Kalle.

11 Kommentare
  1. Default

    Finde ich ehrlich gesagt nicht sehr einleuchtend erklärt

    Von J.Ellibelly, vor 7 Monaten
  2. Default

    Warum kommt in der Formel die Ladung Q vor wenn die Feldstärke unabhängig von der Ladung ist?

    Von Benbela, vor etwa 3 Jahren
  3. Karsten

    @Antares93

    Kraft kann als vektorielle Größe eigentlich nie negativ sein. Man betrachtet immer wie der Wirkungspfeil der Kraft zu dem Wechselwirkungsobjekt steht. Je nach dem wie dieser dazu steht, kann dabei aber sehr wohl eine negative Arbeit bestimmt werden.

    Von Karsten Schedemann, vor etwa 4 Jahren
  4. Default

    eigentlich kommt doch -8,24*10^8 raus oder? da das Elektron negativ ist und dann hat man als resultat eine negative Kraft das bedeutet die kraft ist anziehend oder? und nicht abtstoßend sonst würden alles auseinnander fliegen oder?
    (ich glaube man darf das auch weg lassen mit den vorzeichen, kommt halt auf den lehrer an), Aber wirklich sehr cooles Video! Dankee :)

    Von Antares93, vor etwa 4 Jahren
  5. Karsten

    @Serkan
    Die Elektrische Feldstärke kann entweder über die Kraft die auf eine Ladung in einem Elektrischen Feld wirk bestimmt werden also:
    E=F/Q
    Oder auch in einem Plattenkondensator mit dem Abstand s zwischen den Platten:
    E=U/s

    Von Karsten Schedemann, vor mehr als 4 Jahren
  1. Default

    War die Formel für die Elektrisch Feldstärke icht E=e*U? Oder irre ich mich?

    Von Serkan 21, vor mehr als 4 Jahren
  2. Default

    Super video! Sehr einleuchtend und sogar dank des Vergleiches mit der Schwerkraft sogar interessant!

    Von Bethwagner, vor mehr als 4 Jahren
  3. Maximilian

    @Msts bzw. Libro E Musica:
    Das Video ist mittlerweiler schon 3 Jahre alt. Wir produzieren ständig neue und immer bessere Videos, bei denen wir Hinweise wie diese auch gern berücksichtigen.

    Von Maximilian T., vor mehr als 5 Jahren
  4. Default

    Kalle ist von sich und seinem Stoff so fasziniert, dass er völlig vergisst, warum sich ein sofatutor-Abonnent ein Lehrvideo anschaut: er hat nämlich meistens Schwierigkeiten in dem betreffenden Fach. Die Redaktion Physik und Tutor Kalle glauben doch nicht im Ernst, dass ein solches Herunterrattern von Stoff für einen schwächeren Schüler von Nutzen ist.

    Von Msts, vor mehr als 5 Jahren
  5. Default

    Ich find es gut und sympathisch !

    Von Moritz Klug, vor mehr als 5 Jahren
  6. Default

    inwiefern gibt es die Richtung des Feldes an ? das erwähnst du glaube ich nur in der Zusammenfassung am Schluss..

    Von Lizzy16, vor mehr als 6 Jahren
Mehr Kommentare

Elektrische Feldstärke E Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Elektrische Feldstärke E kannst du es wiederholen und üben.

  • Beschreibe die elektrische Feldstärke.

    Tipps

    $\vec r$ ist ein Vektor und hat somit mehrere Koordinaten. Wie viele Koordinaten hat ein Zeitpunkt?

    Hat die Coulomb-Kraft eher etwas mit Ladungen oder eher etwas mit Massen zu tun?

    Lösung

    Die elektrische Feldstärke wird geschrieben als $\vec E(\vec r)$. Das $\vec r$ ist ein Vektor und hat somit mehrere Dimensionen. Es handelt sich also um einen Ort und nicht um einen Zeitpunkt.

    Die Feldstärke gibt die Stärke des Feldes an, wie man am Begriff "Feldstärke" gut erkennen kann. Das elektrische Feld ist ein Kraftfeld. Es äußert sich durch die Ausübung von Kräften auf Ladungen.

  • Identifiziere Einheiten der elektrischen Feldstärke.

    Tipps

    Die Einheit der Kraft ist Newton $N$.

    Die Einheit der Ladung ist Coulomb $C$.

    Lösung

    Die elektrische Feldstärke $E$ ergibt sich aus der Kraft $F$ auf eine Ladung $Q$ als $E=\frac{F}{Q}$. Die Einheit der Kraft ist Newton $N$ und die Einheit der Ladung ist Coulomb $C$. Die Einheit der elektrischen Feldstärke ist also $[E]=\frac{N}{C}$.

    Newton ist aber $N=kg\frac{m}{s^2}$, was sich aus Newtons zweitem Gesetz ergibt. Setzen wir das ein, erhalten wir:

    $[E]=\frac{kg\cdot m}{s^2\cdot C}$.

    Wenn wir $\frac{N}{C}$ mit Metern $m$ erweitern, finden wir:

    $[E]=\frac{N\cdot m}{m \cdot C}$.

    $N\cdot m=J$ das Joule und Joule pro Coulomb ist Volt. Also:

    $[E]=\frac{V}{m}$.

  • Vergleiche Schwerkraft und Coulombkraft.

    Tipps

    Welche Vorzeichen können Ladungen haben? Welche Vorzeichen können Massen haben?

    Was bedeutet das Vorzeichen der Kraft für die Richtung?

    $k=\frac{1}{4\pi\epsilon}$

    Lösung

    Die Formel für die Coulombkraft zwischen zwei Punktladungen ist:

    $F(r)=k\frac{Q_1Q_2}{r_{12}^2}$.

    Die Konstante $k=\frac{1}{4\pi\epsilon}$ mit $\epsilon$ der elektrischen Feldkonstante.

    Ladungen treten mit positiven oder negativen Vorzeichen auf. Daher wird die Coulombkraft positiv oder negativ, je nachdem, ob die Ladungen $Q_1$ und $Q_2$ gleiche oder entgegen gesetzte Vorzeichen haben. Ein positives Vorzeichen der Kraft bedeutet, dass sie anziehend ist.

    Die Gleichung für die Gravitation zweier Punktmassen ist der Gleichung für die Coulombkraft zweier Punktladungen sehr ähnlich. Man muss die Ladungen $Q_1$ und $Q_2$ nur durch die Massen $m_1$ und $m_2$ vertauschen und die Konstante $k$ durch die Gravitationskonstante $G$.

    $F(r)=G\frac{m_1m_2}{r_{12}^2}$.

    Die Massen haben immer ein positives Vorzeichen. Die Schwerkraft ist also immer anziehend.

    Berechnet man Coulombkraft und Gravitationskraft zum Beispiel für ein Wasserstoffatom, dann findet man heraus, dass die Coulombkraft zwischen Kern und Elektron um einen Faktor $2,3\cdot 10^{39}$ größer ist als die Schwerkraft zwischen Kern und Elektron.

  • Berechne die Feldstärke einer Punktladung.

    Tipps

    Die Ladung des Kerns ergibt sich aus dem Produkt Elementarladung $e$ und der Zahl der Protonen.

    Erinnere dich an die Formel für das elektrische Feld eines Punktteilchens.

    Ein Proton trägt die Ladung $e\approx 1,602\cdot 10^{-19}\,C$.

    Lösung

    Gegeben sind die Zahl der Protonen $Z=26$ im Eisenkern und den Abstand vom Kern $r=2\cdot 10^-12\,m$. Gesucht ist die elektrische Feldstärke $E$ im Abstand $r$ vom Eisenkern.

    Die Formel für das elektrische Feld ist:

    $E=\frac{1}{4\pi\epsilon}\frac{Q}{r^2}$.

    Die Ladung des Kerns ergibt sich als $Q=Z\cdot e$, wobei $e$ die Elementarladung $e\approx 1,602\cdot 10^{-19}\,C$ ist. Epsilon ist die elektrische Feldkonstante $\epsilon\approx 8,854 \cdot 10^{-12}\frac{F}{m}$.

    Setzen wir ein erhalten wir:

    $E=\frac{1}{4\cdot 3,14 \cdot 8,854 \cdot 10^{-12}\frac{F}{m}}\frac{26\cdot 1,602\cdot 10^{-19}\,C}{(2\cdot 10^{-12}\,m)^2}=9,36\cdot 10^{15}\frac{m\cdot C}{F\cdot m^2}$.

    Farad ist Coulomb pro Volt. Deshalb ergibt sich für die Einheit:

    $\frac{m\cdot C}{F\cdot m^2}=\frac{m\cdot C\cdot V}{C\cdot m^2}=\frac{V}{m}$.

    Wir erhalten also:

    $E=9,36\cdot 10^{15}\frac{V}{m}$.

    Das ist eine extrem große Feldstärke. Die maximale Feldstärke in einem Plattenkondensator bei dem sich zwischen den Platten nur Luft befindet ist $3,3\cdot 10^{6}\,\frac{V}{m}$. Bei dieser Spannung kommt es zu einem Überschlag. Das heißt, Elektronen bewegen sich in einem Lichtbogen durch die Luft von der negativ geladenen zur positiv geladenen Platte des Kondensators.

    Der Abstand $r$ ist übrigens der Radius der kleinsten Elektronenbahn im Bohrschen Atommodell des Eisenatoms. Es ist also eine extrem große Feldstärke nötig, um ein Atom auf seiner Bahn zu halten. Man kann sich vorstellen, dass es sich dementsprechend schnell bewegt, da es ja ziemlich leicht ist.

  • Berechne die Feldstärke.

    Tipps

    Erinnere dich an die Definition der Feldstärke.

    Lösung

    Gegeben ist die Ladung $Q=4\,C$ und die Kraft auf die Ladung $F=16\,N$. Gesucht ist die elektrische Feldstärke am Ort der Ladung.

    Die Gleichung für die elektrische Feldstärke ist $E=\frac{F}{Q}$. Wir setzen ein und erhalten:

    $E=\frac{F}{Q}=\frac{16\,N}{4\,C}=4\,\frac{N}{C}$.

    Erweitert man die Einheit mit Metern $m$, ergibt sich:

    $E=4\,\frac{N\cdot m}{C\cdot m}=4\,\frac{J}{C\cdot m}$, da $N\cdot m$ Joule ist.

    Joule pro Coulomb wiederum ist Volt. Also:

    $E=4\,\frac{V}{m}$.

  • Bringe Schwerkraft und Coulombkraft ins Gleichgewicht.

    Tipps

    Erinnere dich an die Formel für die Coulombkraft zwischen zwei Punktladungen.

    Die Formel für die Schwerkraft zwischen zwei Körpern der Massen $m_1$ und $m_2$ im Abstand $r$ ist

    $F=G\frac{m_1m_2}{r^2}$.

    Lösung

    Gegeben sind die elektrische Feldkonstante, die Massen und Ladungen. Gesucht ist der Wert, den die Gravitationskonstante haben müsste, damit im Wasserstoffatom die Schwerkraft und die Coulombkraft des Kerns auf das Elektron gleich groß sind.

    Die Gleichung für die Coulombkraft ist:

    $F=-\frac{1}{4\pi\epsilon}\frac{Q_1Q_2}{r^2}$.

    Die Gleichung für die Schwerkraft ist:

    $F=G\frac{m_1m_2}{r^2}$.

    Wenn wir die beiden Kräfte gleich setzen erhalten wir:

    $\frac{1}{4\pi\epsilon}\frac{Q_1\cdot Q_2}{r^2}=G\frac{m_1\cdot m_2}{r^2}$.

    Jetzt multiplizieren wir auf beiden Seiten mit $r^2$ und teilen durch $m_1\cdot m_2$. Dann erhalten wir

    $G=-\frac{1}{4\pi\epsilon}\frac{ Q_1\cdot Q_2}{ m_1\cdot m_2}$.

    Setzen wir ein für die Ladung des Elektrons $Q_1=-e$ und für die Ladung des Kerns $Q_2=e$ mit $e\approx 1,602\cdot 10^{-19}\,C$, für die elektrische Feldkonstante $\epsilon\approx 8,854 \cdot 10^{-12}\frac{F}{m}$, für die Elektronenmasse $m_1\approx 9,11\cdot 10^{-31}\,kg$ und für die Protonenmasse $m_2=1,67\cdot 10^{-27}\,kg$, dann ergibt sich:

    $G=\frac{1}{4\cdot 3,14\cdot 8,854 \cdot 10^{-12}\frac{F}{m}}\frac{1,602\cdot 10^{-19}\,C)^2}{9,11\cdot 10^{-31}\,kg\cdot 1,67\cdot 10^{-27}\,kg}=15\cdot 10^{-28}\frac{m\cdot C^2}{F\cdot kg^2}$.

    Für die Einheit haben wir $\frac{m\cdot C^2}{F\cdot kg^2}=\frac{m\cdot C^2\cdot V}{C\cdot kg^2}=\frac{m\cdot J}{ kg^2}=\frac{m\cdot kg\cdot m^2}{ kg^2\cdot s^2}=\frac{m^3}{ kg\cdot s^2}$. Wir brauchen also eine Gravitationskonstante von:

    $G=15\cdot 10^{-28} \frac{m^3}{ kg\cdot s^2}$, damit Schwerkraft und Coulombkraft im Wasserstoffatom gleich groß werden.