Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Felder im Vergleich

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 5.0 / 3 Bewertungen
Die Autor*innen
Avatar
Kalo
Felder im Vergleich
lernst du in der 12. Klasse - 13. Klasse

Felder im Vergleich Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Felder im Vergleich kannst du es wiederholen und üben.
  • Nenne die in der Physik gebräuchlichen Felder.

    Tipps

    Massen ziehen sich gegenseitig an.

    Die Feldkräfte sind abhängig von der Position innerhalb des Feldes.

    Ein Astronaut fühlt sich auf der Erde etwa sechs mal schwerer als auf dem Mond.

    Lösung

    In der Physik gebräuchlich sind im Wesentlichen drei verschiedene Felder:

    1.) Gravitationsfeld

    Dieses Feld hat seinen Ursprung in der Masse von Objekten. Die Masse führt dazu, dass diese sich gegenseitig anziehen. Je schwerer ein Objekt ist, desto größer ist auch seine Anziehung, also das Gravitationsfeld.

    So kommt es, dass eine Person von $m = 100 kg$ auf der Erde eine Gewichtskraft $F_G$ von $F_G = m \cdot g = 100 kg \cdot 9,81 \frac{m}{s^2} = 981 N $ erfährt. Dieselbe Person würde auf dem Mond nur etwa mit $F_{G,Mond} = 100 kg \ cdot 1,6 \frac{m}{s^2} = 160 N $ angezogen. Das ist vergleichbar mit einem $16,3 kg$ schweren Hund auf der Erde.

    2.) Elektrisches Feld

    Diese funktioniert ganz ähnlich wie das Gravitationsfeld. Nur ist die maßgebende Größe hier die Stärke der elektrischen Ladungen. Eine starke Ladung zieht ein Elektron stärker an als eine geringere Ladung. Wesentlich ist hier analog zum Gravitationsfeld der Abstand zwischen den Ladungen.

    3.) Magnetisches Feld

    Das magnetische Feld erzeugt ebenfalls eine Kraft: die Lorentzkraft. Diese wirkt auf einen stromdurchflossenen Leiter, dessen effektive Länge einem Magnetfeld ausgesetzt ist.

    Besonders ist, dass das Magnetfeld aufgrund seiner Dipol-Eigenschaft auch als homogenes Feld vorliegen kann. (Bei elektrischen Feldern gibt es auch *homogene, etwa im Kondensator.)

  • Gib an, was ein Feld ist.

    Tipps

    Ein Kompass nutzt das Erdmagnetfeld.

    Dieser funktioniert nur auf der Erde richtig.

    Die Stärke der Wirkung eines Feldes hängt (bei radialsymmetrischen Feldern) von der Entfernung zur Feldmitte ab.

    Lösung

    Die Definition für ein Feld lautet:

    Ein Feld ist ein Raumbereich, in dem auf Objekte mit bestimmten Eigenschaften eine Kraft wirkt, sobald sie in diesen Raum eintreten.

    Am Beispiel des Erdmagnetfeldes kannst du dir diese Definition sicher gut vorstellen:

    Auf Objekte, die sich in Reichweite befinden, also dem Raumbereich des Erdmagnetfeldes, wirkt eine Kraft, solange diese Objekte eine bestimmte Eigenschaft haben: Sie müssen magnetisch beeinflussbar sein, also etwa aus Metall.

    Die Nadel eines Kompasses richtet sich genau aus diesem Grund immer Richtung Norden aus, solange man sich auf der Erde befindet. Entfernt man sich von der Erde, etwa in Richtung des Mars, richtet sich die Kompassnadel nicht mehr nach dem Erdmagnetfeld aus und der Kompass erfüllt seinen Zweck nicht mehr.

  • Berechne den Ortsfaktor des Mars.

    Tipps

    $F = m \cdot a $

    Stelle das allgemeine Gravitationsgesetz um.

    Zwischenziel ist es, die Masse des Objektes, welches von der Mondmasse beschleunigt wird, auszuklammern.

    Der Mond hat eine geringere Anziehungskraft als die Erde, weil er leichter ist.

    Lösung

    Für die Berechnung des Gravitationsfeldes beziehungsweise der wirkenden Kraft von einem Körper mit Masse $m1$ auf einen Körper mit der Masse $ms$ und andersherum (actio = reactio) nutzt man das Newton´sche Gravitationsgesetz.

    Wie du siehst, hängt die Gewichtskraft $F_G$ von der allgemeinen Gravitationskonstanten $\gamma_0 $, der Masse der Körper und deren Entfernung mit $r^2$ ab.

    Weiterhin gilt:

    $ F = m \cdot a $.

    Hat der Mars die Masse $m_ 1$ so ergibt $F_G$ dividiert durch die Masse $m_2$ die wirkende Beschleunigung.

    Mit : $F_{g,\text{Mars}} = m_{\text{Mars}} \cdot g_{\text{Mars}} $ und $m{\text{Mars}} = 6,42 \cdot 10^{23}$ sowie dem Radius $r_{\text{Mars}} = 3.385,00 \text{km} $ folgt also :

    $ \frac{F_{g,\text{Mars}}}{m_{2}} = g_{\text{Mars}} = \gamma_0 \cdot \frac {m_1}{r^2} = $3,69 \frac{\text{m}}{\text{s}^2}$.

  • Bewerte die Aussagen über die Arbeit.

    Tipps

    Arbeit ist die Ableitung der Energie nach dem Weg.

    Unterscheide zwischen Höhe und Strecke !

    $ E_{syst} (t_2) = E_{syst} (t_1) + \delta W $

    Lösung

    Die Arbeit ist definiert als die Ableitung der Energie nach dem Weg: $ \frac {dE}{ds} $.

    Das heißt, ist die Arbeit, die einem System zugeführt wird, null, so verbleibt das System im Ausgangszustand. Wird jedoch Arbeit hinzugefügt, so steigt die Energie des Systems. Wird Arbeit entzogen, sinkt die Energie des Systems.

    Es gilt :

    $ E_{syst} (t_2) = E_{syst} (t_1) + \delta W $.

    Kennen wir zwei Zustände, so können wir auch sagen, wie viel positive oder negative Arbeit verrichtet werden muss, um zwischen den Zuständen zu wechseln.

    Stelle dir einen Ball vor, der auf dem Tisch liegt. Hebst du diesen hoch, wendest du Arbeit auf und die Energie des Systems wird damit erhöht. Fällt der Ball vom Tisch, wird Arbeit verbraucht und der Ball landet auf dem Boden. Dort ist die Energie des Systems geringer. Rollt der Ball jedoch über den Tisch, bewegt er sich also nicht senkrecht zu den Potentiallinien des Schwerfeldes, wird keine Arbeit verrichtet.

  • Gib den Unterschied zwischen den Arten der Felder an.

    Tipps

    Homogen bedeutet sinngemäß gleichmäßig.

    Eine punktförmige Ladung erzeugt ein radialsymmetrisches Feld.

    In einem radialsymmetrischen Feld ist die Feldkraft im Zentrum am größten.

    Lösung

    Wir unterscheiden grundsätzlich zwei Arten von Feldern:

    1.) Das homogene Feld

    Dieses besteht aus parallelen Feldlinien, das heißt, die Dichte der Feldlinien und damit die Stärke des Feldes ist an jedem Ort im Feld konstant (gleichmäßig). Diese Art der Felder tritt hauptsächlich in Kondensatoren oder Magnetfeldern auf.

    2.) Das radialsymmetrische Feld

    Diese Feldart tritt etwa beim Schwerefeld der Erde oder dem elektrischen Feld einer punktförmigen Ladung auf. Wie du in der Grafik siehst, ist die Dichte der Feldlinien abhängig von der Entfernung zum Mittelpunkt des Feldes. Je weiter ein Gegenstand entfernt ist, desto geringer ist die Feldkraft, die auf diesen wirkt.

    Das ist auch gut so!

    Würde etwa das Schwerefeld unserer Sonne als homogenes Feld auf der Erde wirken (also unabhängig von der Entfernung), so wäre die Ortskonstante um den Faktor 27 größer. Du würdest dich also fühlen, als wärst du beinahe $2.000 kg$ schwer !

  • Ermittle die Kräfte.

    Tipps

    $F_G = \gamma \frac{m_1 \cdot m_2}{r^2} $

    $F_{el} = \epsilon_0 \frac {q_1 \cdot q_2}{r^2} $

    Gesucht ist $ F_{el} = F_G $.

    Lösung

    Schauen wir uns zunächst die Formeln an, die zur Berechnung benötigt werden.

    1.) Gravitationsfeld

    $F_G = \gamma \frac{m_1 \cdot m_2}{r^2} $

    2.) elektrisches Feld

    $F_{el} = \epsilon_0 \frac {q_1 \cdot q_2}{r^2} $

    Für beide gilt: Die Richtung der Felder ist zu beachten. Für diese Aufgabe benötigen wir jedoch keine vektoriellen Größen.

    Zielvorgabe ist es, die Fälle zu finden, in denen $ F_{el} = F_G $.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.090

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.922

Lernvideos

36.998

Übungen

34.261

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden