Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Magnetfeld von Spulen

Bereit für eine echte Prüfung?

Das Magnetfeld Spule Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.9 / 10 Bewertungen
Die Autor*innen
Avatar
Team Digital
Magnetfeld von Spulen
lernst du in der 8. Klasse - 9. Klasse - 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema Magnetfeld von Spulen

Das Magnetfeld einer Spule

Wir wollen uns im Folgenden damit beschäftigen, wie das Magnetfeld einer stromdurchflossenen Spule aussieht und welche Eigenschaften es hat. Dazu solltest du schon die Grundlagen zum magnetischen Feld kennen.

Magnetfeld einer Spule – anschauliche Herleitung

Die genaue mathematische Herleitung des Magnetfelds einer Spule ist kompliziert und geht über die Mathematik der Sekundarstufe hinaus. Wir konzentrieren uns deswegen auf anschauliche Überlegungen zum Magnetfeld einer Zylinderspule. Dazu rufen wir uns zunächst einige Charakteristika des magnetischen Felds in Erinnerung.

Wiederholung: Feldlinienmodell

  • Magnetische Feldlinien sind immer geschlossen.
  • Feldlinien schneiden sich nie.
  • Die Dichte der Feldlinien ist proportional zur Stärke des Felds.

Wiederholung: magnetisches Feld eines geraden Leiters

Ein gerader, stromdurchflossener Leiter erzeugt ein Magnetfeld um sich herum. Die Feldlinien dieses Magnetfelds sind konzentrische Kreise, deren Richtung mit der Korkenzieherregel oder Schraubenregel bestimmt werden kann. Die Dichte der Feldlinien nimmt mit wachsendem Abstand zum Draht ab.

Magnetfeld eines Leiters

Das Magnetfeld einer Spule

Mit dieser kurzen Wiederholung haben wir alle Informationen, die wir zur anschaulichen Erklärung benötigen. Wir überlegen zunächst, was passiert, wenn wir den geraden Leiter zu einer Windung verbiegen. Für jedes einzelne Leiterstück bleibt das Magnetfeld so wie oben beschrieben. Durch die Krümmung verdichten sich die Feldlinien allerdings im Inneren der Schleife – dies folgt direkt aus den Annahmen des Feldlinienmodells: Da sich die Feldlinien nicht schneiden dürfen, aber auch nicht ausweichen können, müssen sie sich im Zentrum der Schleife verdichten. Das magnetische Feld im Zentrum der Schleife wird also verstärkt.

Eine Zylinderspule besteht aus vielen solcher Leiterschleifen, die dicht hintereinanderliegen. Auch hier gilt, dass jedes einzelne Teilstück des Leiters ein Magnetfeld wie das eines geraden Leiters erzeugt. Im Inneren der Spule kommt es jedoch zur Verdichtung der Feldlinien. Durch die hintereinanderliegenden Schleifen gibt es einen weiteren Effekt: Die Feldlinien verlaufen im Inneren der Spule annähernd parallel. Ein Magnetfeld, dessen Feldlinien parallel und in annähernd gleichen Abständen verlaufen, nennt man auch homogen. Außerhalb der Spule sieht das Magnetfeld genauso aus wie das Magnetfeld eines Stabmagneten.

Magnetfeld Spule Physik

Das Magnetfeld einer Spule berechnen

Zum Schluss schauen wir uns noch an, wie das Feld im Inneren einer Spule berechnet werden kann. Die Formel leiten wir allerdings aus den zu Beginn erwähnten Gründen nicht selbst her. Für das Magnetfeld $B$ im Inneren einer langen Zylinderspule gilt die Formel:

$|\vec{B}| = \mu \cdot \dfrac{N\cdot I}{l}$

Dabei ist $\mu$ die magnetische Permeabilität, $I$ die Stromstärke, $N$ die Anzahl der Windungen und $l$ die Länge der Spule.

magnetische Flussdichte

Zusammenfassung zum Magnetfeld von Spulen

Wir haben das Magnetfeld einer Spule im Detail beschrieben. Das Magnetfeld einer Spule ergibt sich direkt aus dem eines stromdurchflossenen Leiters. Wir haben daraus hergeleitet, wie das Feld im Inneren einer Zylinderspule aussieht. Wir haben uns auch die Anwendung der Linke-Hand-Regel angesehen und wie man damit die Richtung des magnetischen Flusses bestimmen kann.

Linke-Hand-Regel

Mit der Betrachtung, von welchen Größen die Feldstärke und Flussdichte des Magnetfelds abhängt, haben wir nun eine Grundlage, um das homogene Feld im Inneren einer Spule zu berechnen.

Teste dein Wissen zum Thema Magnetfeld Spule!

1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!

Vorschaubild einer Übung

Transkript Magnetfeld von Spulen

Wie würde es sich anfühlen, wenn du das Magnetfeld der Erde spüren könntest? Es gibt Tiere, die haben so einen „Magnetsinn“. Zum Beispiel Vögel, die sich auf langen Flügen mithilfe des Erdmagnetfeldes orientieren. In unserem Alltag gibt es noch viele weitere Magnetfelder, die durch technische Geräte hervorgerufen werden, die magnetische Spulen enthalten. Was für ein Magnetfeld erzeugen solche Spulen und wie breitet es sich aus? Das lernst du in diesem Video über das „Magnetfeld von Spulen“. Zuerst betrachten wir einen einfachen Draht, durch den elektrischer Strom fließt. Mit einer frei beweglichen Kompassnadel können wir nachweisen, dass um einen solchen „stromdurchflossenen Leiter“ ein Magnetfeld hervorgerufen wird, wodurch die Kompassnadel ausgelenkt wird. Wenn wir die Kompassnadel an unterschiedlichen Stellen positionieren, können wir nachvollziehen, dass das Magnetfeld in einem Kreis um den Draht verlaufen muss. Gemäß dem „Feldlinienmodell“ werden kreisrunde Pfeile gezeichnet, um das Feld darzustellen. Da Magnetfeldlinien immer geschlossen sind, gibt es in diesem Fall keinen eindeutigen magnetischen Nord- und Südpol. Die Stärke des Magnetfeldes kann aber „auch hier“ durch die Dichte der Feldlinien angezeigt werden. Um die Pfeilrichtung der Feldlinien zu bestimmen, gibt es eine einfache Merkregel: Hältst du den Daumen der linken Hand in die Richtung, in die der Strom durch den Draht fließt, krümmen sich die Finger deiner Hand in die Richtung, in die die Pfeile der Feldlinien um den Draht verlaufen. Allerdings musst du hier darauf achten, die physikalische Stromrichtung zu betrachten, also von „Minus“ nach „Plus“ – denn so bewegen sich die negativ geladenen Elektronen durch den Draht. Die technische Stromrichtung ist im Gegensatz dazu von „Plus“ nach „Minus“ festgelegt. Für die linke Hand, und für die rechte nehmen. Deshalb wird hier manchmal von „Linke-Hand-Regel“ oder „Rechte-Hand-Regel“ gesprochen, was ein bisschen verwirrend sein kann. Beide Regeln führen aber zum gleichen Ergebnis, wenn du sie korrekt anwendest. Wir bleiben am besten bei der linken Hand. Was passiert nun, wenn man den Draht einmal aufwickelt? Die Feldlinien werden dann innen dicht aneinandergedrängt, denn sie dürfen sich nicht schneiden. Außen können sie sich weiter ausbreiten. Die Feldlinienrichtung zeigt innen durch die Schleife hindurch, und außen in die andere Richtung. Wickelt man den Draht nun mehrmals, erhält man eine „Spule“ mit vielen „Windungen“. Die Magnetfelder aller Windungen überlagern sich innen und außen, so dass man sie zusammengefasst als große, übergreifende Feldlinien betrachten kann. Innerhalb der Windungen ist das Magnetfeld stark, mit dichten Feldlinien, und zeigt eine klare Ausrichtung von Nord- und Südpol. Außen breiten sich die Feldlinien weiter aus, ganz ähnlich wie bei einem Stabmagneten. Schiebt man einen „Eisenkern“ in die Spule, wird das Magnetfeld noch verstärkt. Das ergibt sich durch die zusätzliche Ausrichtung der „Elementarmagnete“ im Eisen. Man kann dafür auch andere magnetisierbare Materialien nutzen. Die Feldstärke „H“ des Magnetfelds wird außerdem durch die Anzahl „N“ der Windungen, bezogen auf die Länge „L“ der Spule, und die Stärke des durchfließenden Stromes „I“ beeinflusst. Je mehr Windungen pro Spulenlänge, und je größer die Stromstärke, desto stärker das Magnetfeld. Da die Feldstärke mit der Dichte der Feldlinien zusammenhängt, betrachtet man allerdings meistens die „magnetische Flussdichte B“. Diese erhält man, wenn man die Formel noch mit der „magnetischen Permeabilität μ“ multipliziert. So wird miteinberechnet, dass das Feld sich in unterschiedlichen Materialien unterschiedlich stark ausbreitet. Bei der Ausbreitung im Vakuum gilt für μ-Null.“ Den kannst du in deiner Formelsammlung oder im Internet nachsehen. Sieh dir dabei auch die Einheiten an und versuche herauszufinden, wie sich so in der Formel die Einheit „Tesla“ der magnetischen Flussdichte aus „Kilogramm“, „Ampere“ und „Sekunden“ zusammensetzt. Damit hast du schon ein ganz gutes Gefühl für das Magnetfeld der Spule – auch wenn es vielleicht noch nicht zum „Magnetsinn“ der Vögel reicht. Fassen wir zusammen: Das Magnetfeld einer Spule ähnelt dem Magnetfeld eines Stabmagneten. Die Polung hängt von der „Stromrichtung“ ab, die „physikalisch“ oder „technisch“ betrachtet werden kann. Die Magnetfelder der einzelnen „Windungen“ überlagern sich, wobei die Richtung der Feldlinien mit der „Linke-Hand-Regel“ physikalisch bestimmt werden kann. Wie stark das Magnetfeld ist, hängt neben der „magnetischen Permeabilität“ von der Anzahl der Windungen, bezogen auf die Spulenlänge, und der „Stromstärke“ ab. Dies wird durch die „magnetische Flussdichte B“ in Tesla angeben. „B“ und die „magnetische Feldstärke H“ hängen über die Permeabilität „μ“ direkt miteinander zusammen. Und mit dem perfekten Gespür für magnetische Felder, findest du dich sogar im Schlaf noch zurecht wie ein Vogel.

1 Kommentar
1 Kommentar
  1. Gut erklärt!

    Von naru.ka, vor 11 Monaten