Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Lorentzkraft – Kraft auf bewegte Ladungsträger im Magnetfeld

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.6 / 41 Bewertungen
Die Autor*innen
Avatar
Physik-Team
Lorentzkraft – Kraft auf bewegte Ladungsträger im Magnetfeld
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Lorentzkraft – Kraft auf bewegte Ladungsträger im Magnetfeld Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Lorentzkraft – Kraft auf bewegte Ladungsträger im Magnetfeld kannst du es wiederholen und üben.
  • Nenne die Forschungsfelder und Leistungen von Hendrik Antoon Lorentz.

    Tipps

    Hendrik Antoon Lorentz lebte von 1853 bis 1928.

    Hendrik Antoon Lorentz war ein niederländischer theoretischer Physiker und Mathematiker.

    Überlege, wann und wo die Entdeckungen gemacht wurden.

    Lösung

    Hendrik Antoon Lorentz beschäftigte sich als theoretischer Physiker mit den von Maxwell formulierten Theorien zur Elektrizität und zum Licht. Dabei forschte er im Besonderen an der Bewegung von elektrischen Ladungen im magnetischen Feld. Für diese Arbeit erhielt er zusammen mit Pieter Zeeman 1902 den zweiten Nobelpreis für Physik.

    Aber er ist nicht der Erfinder des Glühdrahtes. Dieser wurde von Thomas Edison mühsam entwickelt. Er brauchte 1200 Versuche, um ein geeignetes Material zu finden. Auch das Telefon wurde nicht von ihm entwickelt, sondern schon 1844 von Manzetti.

  • Gib jeweils die Bewegungsrichtung der Schaukel an.

    Tipps

    Nutze die Regel der linken Hand.

    Zwischen Zeigefinger, Daumen und Mittelfinger muss es jeweils einen 90°-Winkel geben.

    Der Daumen zeigt bei der linken Hand in die Richtung der physikalischen Stromrichtung (Elektronenbewegung).

    Wenn ihr in der Schule die rechte Hand verwendet, muss deren Daumen in die technische Stromrichtung zeigen.

    Lösung

    Über die Regel der linken Hand kann man schnell die Bewegungsrichtung eines Leiters in einem Magnetfeld bestimmen. Der Daumen weist dabei in Richtung der Elektronenbewegung, also von Minus nach Plus. Der Zeigefinger zeigt immer in Richtung des Magnetfeldes, also meist auf den Südpol des Magneten. Dann weist der Mittelfinger in Richtung der Bewegung, also in die Richtung, in die die Lorentzkraft wirkt.

    Die Hand zeigt die Wirkungsrichtung der physikalischen Größen im nebenstehenden Leiter. Durch den Leiter fließt der Strom von links nach rechts, also zeigt auch der Daumen der linken Hand nach rechts. Die schwarzen Pfeile des Magnetfeldes weisen in diesem Beispiel nach oben, also zeigt auch der Zeigefinger nach oben. Damit zeigt der Mittelfinger von dir weg und der Leiter bewegt sich damit auch von dir weg.

    Es gibt auch die Regel der rechten Hand dabei zeigt aber der Daumen in die technische Stromrichtung, also von Plus (+) nach Minus (-).

  • Berechne die Stärke der Lorentzkraft, die auf den Draht wirkt.

    Tipps

    Die Lorentzkraft ist bei einem einfachen Leiter sehr klein.

    Die Winkelangabe geht als Faktor ein. Dieser muss bei 90° eins und bei 180° null betragen.

    Lösung

    Gegeben sind: $s= 0,1\,m$,$~~~~I=10\,A$,$~~~~\alpha=45°$ und $~~~~B=0,2\,T$

    Gesucht: $F_{Lo}$ in N

    Mit dieser Gleichung können wir die Lorentzkraft berechen:

    $F_{Lo}=B\,\cdot\,I\,\cdot \,s\, \cdot\,\sin{\alpha}$

    Setzen wir unsere Werte ein:

    $F_{Lo}=0,2\,T\,\cdot\,10\,A\,\cdot\,0,1\,m\,\cdot\,\sin{45°}\approx 0,14\, T\cdot A\cdot m$

    Einheiten:

    Der Sinus eines Winkels hat keine Einheit. Das Ampere A und das Meter m kürzen sich heraus, damit bleibt nur Newton N stehen:

    $[F_{Lo}]=T\,\cdot\,A\,\cdot\,m=\frac{N}{A\,\cdot\,m} \,\cdot\,A\,\cdot\,m=N$

    Damit erhalten wir für die Kraft auf den Leiter:

    ${F}_{Lo}\approx0,14\,N$.

    Auf den Leiter wirkt eine Lorentzkraft von 0,14 N.

  • Erkläre, wie das Klopfen im MRT entsteht.

    Tipps

    Wenn ein Körper schwingt, sendet er Schallwellen aus. Besonders starke Schallwellen werden im Resonanzfall ausgesendet.

    Resonanz ist die Verstärkung einer Schwingung, wenn ein Körper mit einem beliebigen Vielfachen seiner Eigenfrequenz schwingt.

    Lösung

    Der MRT ist eines von vielen Diagnoseinstrumenten der medizinischen Diagnostik. Es wird vor allem in der Radiologie eingesetzt. Das Gerät erzeugt 3D-Bilder des Körperinneren.

    Früher wurde zur Bildgebung die Röntgentechnik eingesetzt. Bei dieser werden Röntgenstrahlen mit einem hohen Durchdringungsvermögen durch den Körper gestrahlt. Da Knochen und weiches Gewebe unterschiedlich stark durchlässig für Röntgenstrahlen sind, konnte so auf einem Fotopapier das Körperinnere sichtbar gemacht werden.

    Die Belastung für den menschlichen Körper ist beim MRT höher als beim Röntgen, jedoch bietet das Verfahren eine wesentlich höhere Auflösung und eine dreidimensionale Bildgebung.

  • Nenne die Drei-Finger-Regel der linken Hand.

    Tipps

    $\vec{v}$ steht für die Bewegungsrichtung der Elektronen, $\vec{B}$ für die Richtung der magnetischen Flussdichte, $\vec{F}_{Lo}$ für die Richtung der Lorentzkraft, $\vec{F}_{Cou}$ für die Richtung der elektrischen Kraft und $\vec{D}$ für die elektrische Flussdichte.

    Die magnetische Flussdichte zeigt immer in die Richtung der Magnetfeldlinien.

    Lösung

    Mit der Regel der linken Hand kann man sehr schnell überprüfen, in welche Richtung ein elektrischer Leiter in einem Magnetfeld bewegt wird.

    Dazu prüft man zunächst die Polung des Stroms im Leiter und lässt den Daumen von Minus nach Plus zeigen. Dann dreht man die Hand so, dass der zum Daumen im 90°-Winkel stehende Zeigefinger in Richtung des Magnetfeldes weißt. Danach muss man nur noch den Mittelfinger senkrecht zu den beiden anderen Fingern weisen lassen. In diese Richtung bewegt sich dann der elektrische Leiter.

    Aber Achtung! Der Physiker unterscheidet zwischen zwei Stromrichtungen. Die physikalische Stromrichtung beschreibt die Elektronenbewegung von - nach + und die technische Stromrichtung weist genau in die andere Richtung von + nach - und ist historisch gewachsen. Um die Wirkungsrichtung der Lorentzkraft zu bestimmen, gilt für die physikalische Stromrichtung die Regel der linken Hand und für die technische Stromrichtung die Regel der rechten Hand.

  • Erkläre, was bei diesem Experiment geschehen wird.

    Tipps

    Betrachte das Drahtstück oberhalb der Batterie.

    Der Nordpol eines Magneten wird im Regelfall rot gekennzeichnet.

    Die magnetischen Feldlinien weisen immer in Richtung des Südpols eines Magneten.

    Lösung

    Aufbau des Motors
    Dieser Versuch zeigt den einfachsten möglichen Motor. Diesen kann man ganz einfach nachbauen. Dazu werden die Komponenten (Magnet, Spule, Batterie) wie in der Abbildung dargestellt verbunden. Der Kupferdraht wird gleichmäßig zu einer Spule gewickelt. Dabei ist darauf zu achten, die waagerechten Anteile möglichst groß zu halten. Unter der Batterie wird eine Kupfermünze platziert. An dieser schleift die Drahtspule entlang. Unter der Batterie werden nun einige Magneten positioniert, deren Nord- oder Südpol jeweils zur Batterie weisen sollten.

    Drehrichtung des Motors
    Nun kann man mit der Regel der linken Hand die Drehrichtung der Spule bestimmen. Betrachten wir nun das oberste waagerechte Stück der Spule, sehen wir, dass dieses vom Mittelpunkt der Batterie zur Außenkante führt. In diesem fließt ein Elektronenstrom von rechts nach links. Daher weist auch der Daumen nach links. Das Magnetfeld zeigt in diesem Fall von unten nach oben. Daher zeigt auch der Zeigefinger nach oben. Damit zeigt der Mittelfinger nun zu dir, also aus der Bildebene heraus. Die Spule dreht sich, von oben betrachtet, im Uhrzeigersinn.

    Wichtiger Hinweis
    Doch Achtung! Da es im Stromkreis keinen Lastwiderstand gibt, fließt ein Kurzschlusstrom und die Batterie kann sich nach kurzer Zeit erhitzen. Daher sollte der Motor nur in kurzen Sequenzen betrieben werden.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.919

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.907

Lernvideos

36.936

Übungen

34.195

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden