Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Magnetischer Fluss Φ und magnetische Flussdichte B – Vergleich

Die magnetische Flussdichte gibt an, wie dicht die Feldlinien eines Magnetfeldes sind und wie stark dieses ist. Symbole, Berechnungswege und Maßeinheiten werden erklärt. Interessiert? Das und mehr erfährst du im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Magnetischer Fluss Φ und magnetische Flussdichte B – Vergleich

Was ist die magnetische Flussdichte?

1/4
Bewertung

Ø 3.4 / 16 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Magnetischer Fluss Φ und magnetische Flussdichte B – Vergleich
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Magnetischer Fluss Φ und magnetische Flussdichte B – Vergleich Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Magnetischer Fluss Φ und magnetische Flussdichte B – Vergleich kannst du es wiederholen und üben.
  • Gib an, was man unter dem magnetischen Fluss und der magnetischen Flussdichte versteht.

    Tipps

    Welche Formelzeichen kennst du schon? Welche sind dir eventuell neu?

    Lösung

    Der magnetische Fluss und die magnetische Flussdichte sind zwei wichtige Größen der Elektrizitätslehre, welche man leicht miteinander verwechseln kann. Jedoch beschreiben beide Größen einen anderen Sachverhalt.

    Als magnetischen Fluss $\Phi$ versteht man nämlich den gesamten Fluss eines Magnetfeldes, repräsentiert durch die Summe aller Feldlinien.

    Die magnetische Flussdichte $B$ einer Fläche $A$ wiederum gibt die Dichte und Richtung der Feldlinien an, von denen sie durchsetzt wird.

  • Gib an, unter welchen Voraussetzungen man die Gleichung des magnetischen Flusses $\Phi$ vereinfachen kann.

    Tipps

    $\Phi=\int_A \overrightarrow{B} \cdot d\overrightarrow{A}$.

    Wie lässt sich die Fläche berechnen?

    Lösung

    Im Allgemeinen ist der magnetische Fluss $\Phi$ durch eine beliebige Fläche $A$ definiert als: $\Phi=\int_A \overrightarrow{B} \cdot d\overrightarrow{A}$.

    Diese Gleichung wird in der Schule jedoch sehr selten genutzt und kann vereinfacht werden. Falls nämlich das magnetische Feld homogen und die Fläche $A$ eben ist, so ist der magnetische Fluss gleich dem Skalarprodukt aus magnetischer Flussdichte $B$ und dem Flächenvektor $A$. In diesem Fall gilt: $\Phi=\overrightarrow{B} \cdot \overrightarrow{A}$.

  • Gib zu den jeweiligen physikalischen Größen die zugehörigen Einheiten an.

    Tipps

    Die magnetische Flussdichte wird in Tesla angegeben.

    Der magnetisch Fluss wird in Weber angegeben.

    Lösung

    Die Magnetische Flussdichte wie auch der magnetische Fluss hat eine eigene Einheit und besteht aus vielen Kombinationsmöglichkeiten von SI-Einheiten:

    Die magnetische Flussdichte $B$ wird in Tesla angegeben, wobei gilt: $1~T=1~\frac{J}{A\cdot m^2}=1~\frac{V\cdot s}{m^2}$.

    Der magnetisch Fluss $\Phi$ wird in Weber angegeben, wobei gilt: $1~Wb=1~V\cdot s=1~T \cdot m^2$.

  • Gib zu den jeweiligen Fragen die passende Formel an.

    Tipps

    $F_L$ ist die Lorentzkraft.

    $N$ ist die Windungszahl einer Spule.

    Lösung

    Im Allgemeinen ist der magnetische Fluss $\Phi$ durch eine beliebige Fläche $A$ definiert als: $\Phi=\int_A \overrightarrow{B} \cdot d\overrightarrow{A}$.

    Diese Gleichung wird in der Schule jedoch sehr selten genutzt und kann vereinfacht werden. Falls nämlich das magnetische Feld homogen und die Fläche $A$ eben ist, so ist der magnetische Fluss gleich dem Skalarprodukt aus magnetischer Flussdichte $B$ und dem Flächenvektor $A$. In diesem Fall gilt: $\Phi=\overrightarrow{B} \cdot \overrightarrow{A}$.

    Die magnetische Flussdichte $B$ hingegen kann für geladene Teilchen bestimmt werden, wenn die Lorentzkraft $F_L$ und die Geschwindigkeit $v$ bekannt sind: $B=\frac{F_L}{q\cdot v}$.

    Ist die magnetische Flussdichte $B$ wiederum in einer Spule gesucht, so kannst du folgende Gleichung nutzen: $B=\mu \cdot N \frac{I}{l}$.

  • Gib an, welche physikalische Größe die Menge des Wassers repräsentiert, wenn man einen Magneten mit einem Wasserkreislauf erklären möchte.

    Tipps

    Für welche physikalischen Größen stehen die jeweiligen Formelzeichen?

    Lösung

    Der magnetische Fluss $\Phi$ kann als Gesamtheit aller magnetischen Feldlinien verstanden werden, also der Gesamtheit des spürbaren Magnetismus. Vergleicht man einen Magnet mit einem Wasserkreislauf, so stehen die Feldlinien für das sich bewegende Wasser.

    Somit steht $\Phi$ (als Gesamtheit aller magnetischen Feldlinien) für die Menge des Wassers in diesem Kreislauf.

  • Gib die magnetische Flussdichte $B$ auf einem Elektron an, wenn $F_L=4,2\cdot 10^{-16}~N$ und $v=1,66\cdot 10^6~m/s$ betragen.

    Tipps

    Schreibe dir die gegebenen und gesuchten Größen auf.

    $B=\frac{F_L}{q\cdot v}$

    Hast du das Ergebnis richtig gerundet?

    Die Ladung eines Elektrons entspricht.

    Lösung

    Um diese Aufgabe lösen zu können, schreiben wir zuerst die gegeben und gesuchten Größen auf, halten die Formel zur Berechnung fest, setzen die Zahlenwerte ein und formulieren einen Antwortsatz.

    Gegeben: $F_L=4,2\cdot 10^{-16}~N$; $~~~~$ $v=1,66\cdot 10^6~m/s$

    Gesucht: $B$ in $mT$

    Formel: $B=\frac{F_L}{q\cdot v}$

    Berechnung: $B=\frac{F_L}{q\cdot v}=\frac{4,2\cdot 10^{-16}~N}{1,6\cdot 10^{-19}~A\cdot s \cdot 1,66\cdot 10^6~m/s}=0,00158\frac{N}{A\cdot m}=0,00158\frac{J}{A\cdot m^2}=0,00158~T=1,58~mT$

    Antwortsatz: Die magnetische Flussdichte beträgt $1,58 ~mT$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.807

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.859

Lernvideos

37.798

Übungen

33.936

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden