Magnetischer Fluss Φ und magnetische Flussdichte B – Vergleich
Die magnetische Flussdichte gibt an, wie dicht die Feldlinien eines Magnetfeldes sind und wie stark dieses ist. Symbole, Berechnungswege und Maßeinheiten werden erklärt. Interessiert? Das und mehr erfährst du im folgenden Text!
- Magnetische Flussdichte – Definition
- Magnetische Flussdichte – einfach erklärt
- Magnetische Flussdichte und magnetische Feldstärke
- Magnetischer Fluss – einfach erklärt
- Ausblick – das lernst du nach Magnetischer Fluss Φ und magnetische Flussdichte B – Vergleich
- Zusammenfassung zur magnetischen Flussdichte und dem magnetischen Fluss
- Häufig gestellte Fragen zum Thema Magnetische Flussdichte und magnetischer Fluss
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Kräfte im Magnetfeld
Magnetfeld eines geraden, stromdurchflossenen Drahtes
Magnetfeld von Spulen
Magnetische Permeabilität µ
Lorentzkraft – Kraft auf bewegte Ladungsträger im Magnetfeld
Lorentzkraft – Bewegte Ladung und Ströme im magnetischen Feld
Magnetischer Fluss Φ und magnetische Flussdichte B – Vergleich
Energie einer stromdurchflossenen Spule
Energiedichte von Feldern
Bestimmung der spezifische Ladung am Fadenstrahlrohr
Felder im Vergleich
Elektromagnete – Entdeckung und Entwicklung
Magnetischer Fluss Φ und magnetische Flussdichte B – Vergleich Übung
-
Gib an, was man unter dem magnetischen Fluss und der magnetischen Flussdichte versteht.
TippsWelche Formelzeichen kennst du schon? Welche sind dir eventuell neu?
LösungDer magnetische Fluss und die magnetische Flussdichte sind zwei wichtige Größen der Elektrizitätslehre, welche man leicht miteinander verwechseln kann. Jedoch beschreiben beide Größen einen anderen Sachverhalt.
Als magnetischen Fluss $\Phi$ versteht man nämlich den gesamten Fluss eines Magnetfeldes, repräsentiert durch die Summe aller Feldlinien.
Die magnetische Flussdichte $B$ einer Fläche $A$ wiederum gibt die Dichte und Richtung der Feldlinien an, von denen sie durchsetzt wird.
-
Gib an, unter welchen Voraussetzungen man die Gleichung des magnetischen Flusses $\Phi$ vereinfachen kann.
Tipps$\Phi=\int_A \overrightarrow{B} \cdot d\overrightarrow{A}$.
Wie lässt sich die Fläche berechnen?
LösungIm Allgemeinen ist der magnetische Fluss $\Phi$ durch eine beliebige Fläche $A$ definiert als: $\Phi=\int_A \overrightarrow{B} \cdot d\overrightarrow{A}$.
Diese Gleichung wird in der Schule jedoch sehr selten genutzt und kann vereinfacht werden. Falls nämlich das magnetische Feld homogen und die Fläche $A$ eben ist, so ist der magnetische Fluss gleich dem Skalarprodukt aus magnetischer Flussdichte $B$ und dem Flächenvektor $A$. In diesem Fall gilt: $\Phi=\overrightarrow{B} \cdot \overrightarrow{A}$.
-
Gib zu den jeweiligen physikalischen Größen die zugehörigen Einheiten an.
TippsDie magnetische Flussdichte wird in Tesla angegeben.
Der magnetisch Fluss wird in Weber angegeben.
LösungDie Magnetische Flussdichte wie auch der magnetische Fluss hat eine eigene Einheit und besteht aus vielen Kombinationsmöglichkeiten von SI-Einheiten:
Die magnetische Flussdichte $B$ wird in Tesla angegeben, wobei gilt: $1~T=1~\frac{J}{A\cdot m^2}=1~\frac{V\cdot s}{m^2}$.
Der magnetisch Fluss $\Phi$ wird in Weber angegeben, wobei gilt: $1~Wb=1~V\cdot s=1~T \cdot m^2$.
-
Gib zu den jeweiligen Fragen die passende Formel an.
Tipps$F_L$ ist die Lorentzkraft.
$N$ ist die Windungszahl einer Spule.
LösungIm Allgemeinen ist der magnetische Fluss $\Phi$ durch eine beliebige Fläche $A$ definiert als: $\Phi=\int_A \overrightarrow{B} \cdot d\overrightarrow{A}$.
Diese Gleichung wird in der Schule jedoch sehr selten genutzt und kann vereinfacht werden. Falls nämlich das magnetische Feld homogen und die Fläche $A$ eben ist, so ist der magnetische Fluss gleich dem Skalarprodukt aus magnetischer Flussdichte $B$ und dem Flächenvektor $A$. In diesem Fall gilt: $\Phi=\overrightarrow{B} \cdot \overrightarrow{A}$.
Die magnetische Flussdichte $B$ hingegen kann für geladene Teilchen bestimmt werden, wenn die Lorentzkraft $F_L$ und die Geschwindigkeit $v$ bekannt sind: $B=\frac{F_L}{q\cdot v}$.
Ist die magnetische Flussdichte $B$ wiederum in einer Spule gesucht, so kannst du folgende Gleichung nutzen: $B=\mu \cdot N \frac{I}{l}$.
-
Gib an, welche physikalische Größe die Menge des Wassers repräsentiert, wenn man einen Magneten mit einem Wasserkreislauf erklären möchte.
TippsFür welche physikalischen Größen stehen die jeweiligen Formelzeichen?
LösungDer magnetische Fluss $\Phi$ kann als Gesamtheit aller magnetischen Feldlinien verstanden werden, also der Gesamtheit des spürbaren Magnetismus. Vergleicht man einen Magnet mit einem Wasserkreislauf, so stehen die Feldlinien für das sich bewegende Wasser.
Somit steht $\Phi$ (als Gesamtheit aller magnetischen Feldlinien) für die Menge des Wassers in diesem Kreislauf.
-
Gib die magnetische Flussdichte $B$ auf einem Elektron an, wenn $F_L=4,2\cdot 10^{-16}~N$ und $v=1,66\cdot 10^6~m/s$ betragen.
TippsSchreibe dir die gegebenen und gesuchten Größen auf.
$B=\frac{F_L}{q\cdot v}$
Hast du das Ergebnis richtig gerundet?
Die Ladung eines Elektrons entspricht.
LösungUm diese Aufgabe lösen zu können, schreiben wir zuerst die gegeben und gesuchten Größen auf, halten die Formel zur Berechnung fest, setzen die Zahlenwerte ein und formulieren einen Antwortsatz.
Gegeben: $F_L=4,2\cdot 10^{-16}~N$; $~~~~$ $v=1,66\cdot 10^6~m/s$
Gesucht: $B$ in $mT$
Formel: $B=\frac{F_L}{q\cdot v}$
Berechnung: $B=\frac{F_L}{q\cdot v}=\frac{4,2\cdot 10^{-16}~N}{1,6\cdot 10^{-19}~A\cdot s \cdot 1,66\cdot 10^6~m/s}=0,00158\frac{N}{A\cdot m}=0,00158\frac{J}{A\cdot m^2}=0,00158~T=1,58~mT$
Antwortsatz: Die magnetische Flussdichte beträgt $1,58 ~mT$.
8.807
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.859
Lernvideos
37.798
Übungen
33.936
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Physik
- Temperatur
- Schallgeschwindigkeit
- Dichte
- Drehmoment
- Transistor
- Lichtgeschwindigkeit
- Galileo Galilei
- Rollen- Und Flaschenzüge Physik
- Radioaktivität
- Lorentzkraft
- Beschleunigung
- Gravitation
- Wie entsteht Ebbe und Flut?
- Hookesches Gesetz Und Federkraft
- Elektrische Stromstärke
- Elektrischer Strom Wirkung
- Reihenschaltung
- Ohm'Sches Gesetz
- Freier Fall
- Kernkraftwerk
- Was sind Atome
- Aggregatzustände
- Infrarot, Uv-Strahlung, Infrarot Uv Unterschied
- Isotope, Nuklide, Kernkräfte
- Transformator
- Lichtjahr
- Si-Einheiten
- Fata Morgana
- Gammastrahlung, Alphastrahlung, Betastrahlung
- Kohärenz Physik
- Mechanische Arbeit
- Schall
- Schall
- Elektrische Leistung
- Dichte Luft
- Ottomotor Aufbau
- Kernfusion
- Trägheitsmoment
- Heliozentrisches Weltbild
- Energieerhaltungssatz Fadenpendel
- Linsen Physik
- Ortsfaktor
- Interferenz
- Diode und Photodiode
- Wärmeströmung (Konvektion)
- Schwarzes Loch
- Frequenz Wellenlänge
- Elektrische Energie
- Parallelschaltung
- Dopplereffekt, Akustischer Dopplereffekt