Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Coulombsches Gesetz

Erfahre, wie sich gleichnamige Ladungen abstoßen und ungleichnamige anziehen. Inklusive eines historischen Experiments mit einer Torsionswaage und der Formel $F = \frac{k \cdot Q_1 \cdot Q_2}{r^{2}}$. Interessiert? Dies und vieles mehr findest du im folgenden Video!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Coulombsches Gesetz

Was beschreibt das coulombsche Gesetz?

1/4
Bewertung

Ø 4.1 / 56 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Coulombsches Gesetz
lernst du in der 9. Klasse - 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Coulombsches Gesetz Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Coulombsches Gesetz kannst du es wiederholen und üben.
  • Tipps

    Das Coulombsche Gesetz war schon im 18. Jahrhundert bekannt.

    Lösung

    Das Coulombsche Gesetz wurde von Charles Augustin de Coulomb entdeckt und deshalb wird es Coulombsches Gesetz genannt. Er verwendete für seine Experimente zur Bestimmung des Gesetzes eine Drehwaage.

    Das Coulombsche Gesetzt beschreibt die Kraft zwischen kugel- beziehungsweise punktförmigen Ladungen. Diese Kräfte sind Teil der Elektrostatik.

  • Tipps

    Erinnere dich an die Permittivität oder elektrische Feldkonstante $\epsilon$.

    Lösung

    Coulomb führte Experimente mit einer Drehwaage durch. Aus seinen Ergebnissen konnte er folgendes schlussfolgern:

    - Die Kraft zwischen den beiden Ladungen ist proportional zum Produkt der Ladungen.

    - Die Kraft zwischen den beiden Ladungen ist antiproportional zum Abstand der Ladungen zum Quadrat.

    - Für mehr als zwei Ladungen addieren sich die Kräfte.

    Daraus ergibt sich das Coulombsche Gesetz zu:

    $F=k\frac{Q_1\cdot Q_2}{r^2}$, wobei $k$ eine Konstante ist. Sie ergibt sich als

    $k=\frac{1}{4\pi \epsilon}$. $\epsilon$ ist die Permittivität oder elektrische Feldkonstante. Sie ist eine Materialkonstante und gibt an, wie gut elektrische Felder ein Material durchdringen können. Die Coulombkraft ist also abhängig vom Material.

  • Tipps

    Erinnere dich an die Permittivitätskonstante. Die Permittivitätskonstante des Vakuums wird auch als Dielektrizitätskonstante oder elektrische Feldkonstante bezeichnet.

    Lösung

    Gegeben sind der Abstand der Ladungen $r=1\,m$ und die Beträge der Ladungen $Q_1=2\,C$ und $Q_2=1\,C$. Gesucht ist der Betrag der Coulombkraft. Für diesen sind die Vorzeichen der Ladungen irrelevant.

    Die Coulombgleichung lautet:

    $F=\frac{1}{4\pi\epsilon}\frac{Q_1\cdot Q_2}{r^2}$.

    Setzen wir die gegebenen Werte und die Permittivität des Vakuums $\epsilon= 8.854\cdot 10^{-12} \frac{F}{m}$ ein, ergibt sich:

    $F\approx \frac{1}{4\cdot 3,14\cdot 8.854\cdot 10^{-12} \frac{F}{m}}\frac{2\,C\cdot 1\,C}{(1\,m)^2}\approx 1,8\cdot 10^{10}\,\frac{C^2\cdot m}{F\cdot m^2}$.

    Farad ist Coulomb pro Volt und wir finden für die Einheit:

    $\frac{C^2\cdot m}{F\cdot m^2}=\frac{C\cdot V}{m}=\frac{J}{m}=N$.

    Die Kraft zwischen den beiden kugelförmigen Ladungen beträgt also:

    $F=1,8\cdot 10^{10}\,N$.

  • Tipps

    Schaue dir die Coulombgleichung genau an.

    Lösung

    Gegeben ist die Coulombkraft im Vakuum, die der Coulombkraft in Petroleum entspricht, falls $Q_3=2\cdot Q_2$ ist. Dabei ist $Q_2$ die Ladung der zweiten Kugel im Vakuum und $Q_3$ die Ladung der zweiten Kugel im Petroleum. Gesucht ist die Permittivität von Petroleum.

    Schauen wir uns die Coulombgleichung an:

    $F_V=\frac{1}{4\pi\epsilon_V}\frac{Q_1\cdot Q_2}{r^2}$

    und

    $F_P=\frac{1}{4\pi\epsilon_P}\frac{Q_1\cdot Q_3}{r^2}$,

    wobei $\epsilon_V$ die Permittivität des Vakuums und $\epsilon_P$ die Permittivität von Petroleum ist.

    Setzen wir nun $F_P$ und $F_V$ gleich, können wir viel auf beiden Seiten kürzen und erhalten:

    $\frac{Q_3}{\epsilon_P}=\frac{Q_2}{\epsilon_V}$.

    Durch Multiplizieren mit $\epsilon_P$ und Dividieren durch $\frac{Q_2}{\epsilon_V}$ auf beiden Seiten ergibt sich:

    $\epsilon_P=\frac{Q_3}{Q_2}\epsilon_V=\frac{2\cdot Q_2}{Q_2}\epsilon_V=2\cdot \epsilon_V \approx 17,708 \frac{F}{m}$.

  • Tipps

    Wie verhalten sich gleichnamige Ladungen?

    Was passiert, wenn ein geladenes Objekt ein leitendes Objekt berührt?

    Lösung

    Die Drehwaage ist folgendermaßen aufgebaut:

    Zwei leitende Kugeln, die über einen Stab verbunden sind, hängen an einem Band. Möchte man das Band verdrehen, spürt man einen Widerstand.

    Eine der Kugeln berührt eine weitere leitende Kugel an einem Stab aus nichtleitendem Material.

    Das Experiment zur Bestimmung des Coulombschen Gesetzes läuft nun auf folgende Weise ab:

    Mit einer weiteren leitenden Kugel werden Ladungen auf die beiden sich berührenden Kugeln gebracht. Gleichnamige Ladungen stoßen sich durch die Coulombkraft ab. Deshalb entfernen sich die Kugeln voneinander. Dadurch wird das Band verdreht, was wieder eine Drehkraft auf den Stab bewirkt, die der Coulombkraft entgegengesetzt ist. Der Stab dreht sich also so weit, bis die Drehkraft des Bands und die Coulombkraft genau gleich sind. Daraus lässt sich die Coulombkraft berechnen.

  • Tipps

    Die Kraft zwischen den beiden Kugeln entspricht der Coulombkraft zwischen den Ladungen.

    Lösung

    Gegeben ist die Ladung auf den beiden Kugeln $Q=2\cdot 10^{-5}\,C$ und die Kraft zwischen den Kugeln $F=50\,N$. Gesucht ist der Abstand der Kugeln.

    Die Coulombgleichung besagt für $Q_1=Q_2=Q$

    $F=\frac{1}{4\pi\epsilon}\frac{Q^2}{r^2}$.

    Durch Multiplikation mit $r^2$ und Division durch $F$ auf beiden Seiten der Gleichung erhalten wir:

    $r^2=\frac{1}{4\pi\epsilon}\frac{Q^2}{F}$.

    Nehmen wir auf beiden Seiten die Wurzel, finden wir für den Abstand der Kugeln:

    $r=\frac{1}{\sqrt{4\pi\epsilon\cdot F}}Q$.

    Indem wir einsetzen, finden wir:

    $r \approx \frac{1}{\sqrt{4\cdot 3,14\cdot 8,854 \cdot 10^{-12}\frac{F}{m}\cdot 50\, N}}2\cdot 10^{-5}\,C \approx 0,268\,\sqrt{\frac{m}{N\cdot F}}C$.

    Farad ist Coulomb pro Volt und Volt ist Joule pro Coulomb. Also ist Farad gleich Coulomb zum Quadrat durch Joule. Joule ist Newton mal Meter. Also ist Farad mal Newton gleich Coulomb zum Quadrat pro Meter. Also ergibt sich für die Einheit:

    $\sqrt{\frac{m}{N\cdot F}}C=\sqrt{\frac{m^2}{C^2}}C=m$

    und wir erhalten für den Abstand der Ladungen das Ergebnis:

    $r=26,8\,cm$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden