Zusammengesetzter Dreisatz
Erfahrt, wann der zusammengesetzte Dreisatz erforderlich ist und wie man ihn löst. Seid wie die schlauen Pinguine und nutzt Mathe für eine bessere Planung! Interessiert? Das und vieles mehr findet ihr im folgenden Text.
- Wie rechnet man mit dem zusammengesetzten Dreisatz?
- Zusammengesetzter Dreisatz – proportional und proportional
- Zusammengesetzter Dreisatz – antiproportional und antiproportional
- Zusammengesetzter Dreisatz – antiproportional und proportional

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Wie löse ich Aufgaben mit dem Dreisatz?

Dreisatz bei proportionalen und antiproportionalen Zuordnungen

Dreisatz bei proportionalen Zuordnungen – Beispiele

Dreisatz bei antiproportionalen Zuordnungen – Beispiele

Dreisatz bei Textaufgaben – proportional oder antiproportional?

Zusammengesetzter Dreisatz

Dreisatz – Übungen
Zusammengesetzter Dreisatz Übung
-
Berechne die Lösung mit einem doppelten Dreisatz.
TippsIm ersten Teil der Rechnung halten wir die Zeit, in der produziert wird, konstant. Dann berechnen wir mit einem Dreisatz die korrekte Anzahl der ersten Zuordnung zwischen Anzahl der Maschinen und Eiswürfel.
Hast du einen Dreisatz für eine der beiden Zuordnungen aufgestellt, kannst du so rechnen, wie du es für Dreisätze gewohnt bist.
LösungSo kannst du die Lösung bestimmen:
$2$ Maschinen produzieren in $3$ Stunden $98$ Eiswürfel. Um zu berechnen, wie viele Eiswürfel eine Maschine produziert, teilen wir die Zuordnung durch $2$.
Eine Maschine produziert also $98:2=49$ Eiswürfel.
Anschließend werden beide Seiten der Zuordnung mit $6$ multipliziert.
Also produzieren sechs Maschinen $49\cdot 6=294$ Eiswürfel.
Im ersten Teil der Rechnung halten wir die Zeit, in der produziert wird, konstant. Dann berechnen wir mit einem Dreisatz die korrekte Anzahl der ersten Zuordnung zwischen Anzahl der Maschinen und Eiswürfel.
Sechs Maschinen produzieren also in $3$ Stunden $294$ Eiswürfel. Um zu berechnen, wie viele Eiswürfel in einer Stunde produziert werden, teilen wir beide Seiten durch $3$.
In einer Stunde werden also $294:3=98$ Eiswürfel produziert.
Anschließend multiplizieren wir beide Seiten mit $8$.
Also produzieren $6$ Maschinen in $8$ Stunden $98\cdot 8=784$ Eiswürfel.
Im zweiten Teil halten wir die Anzahl der Maschinen konstant und rechnen nur mit der zweiten Zuordnung zwischen Zeit und Eiswürfel.
-
Berechne die Lösung mit einem doppelten Dreisatz.
TippsIn der Rechnung halten wir zunächst die Anzahl der Tanks konstant und berechnen, wie lange es dauert, die zwei Wassertanks über $3$ Schläuche zu füllen.
Beachte, ob es sich bei dem jeweiligen Dreisatz um eine proportionale oder antiproportionale Zuordnung handelt.
LösungIn der Rechnung halten wir zunächst die Anzahl der Tanks konstant und berechnen, wie lange es dauert, $3$ Tanks über $3$ Schläuche zu füllen. Beachte, dass es sich dabei um eine antiproportionale Zuordnung handelt. Je mehr Schläuche verwendet werden, desto kürzer dauert es.
Im zweiten Teil halten wir die Anzahl der Schläuche konstant und berechnen, wie lange es dauert, $6$ Tanks zu füllen. Beachte, dass es sich hierbei um eine proportionale Zuordnung handelt. Denn je mehr Tanks gefüllt werden müssen, desto länger dauert es.
-
Wende einen doppelten Dreisatz an.
TippsDie zweite Zuordnung zwischen der Anzahl der Sprayer und der benötigten Zeit ist antiproportional.
Bei einer antiproportionalen Zuordnung teilst du die zweite Größe durch diejenige Zahl, mit der du die erste Größe multiplizierst.
LösungZuerst halten wir die Anzahl der vier Personen konstant. Die Zuordnung zwischen der Anzahl der Waggons und der benötigten Zeit ist proportional.
$8$ Waggons entsprechen $12$ Stunden.
Also teilen wir beide Seiten dieser Zuordnung durch $8$.
- Sie benötigen also für einen Waggon $1,5$ Stunden.
Jetzt können wir diese Zuordnung mit der Anzahl der Waggons multiplizieren. Wir erhalten:
- Für zwei Waggons brauchen sie $3$ Stunden.
- Für zwölf Waggons brauchen sie $18$ Stunden.
- Für sechs Waggons brauchen sie $9$ Stunden.
Anschließend halten wir die Anzahl der Waggons konstant und rechnen mit der zweiten Zuordnung zwischen der Anzahl der Sprayer und der benötigten Zeit. Diese Zuordnung ist antiproportional.
$12$ Waggons: Vier Menschen brauchen $18$ Stunden.
- Also brauchen acht Menschen $9$ Stunden.
$6$ Waggons: Vier Menschen brauchen $9$ Stunden.
- Also brauchen zwei Menschen $18$ Stunden.
-
Erschließe die Lösung mit einem doppelten Dreisatz.
TippsBei einer doppelten proportionalen Zuordnung kannst du eine der Größen zunächst konstant halten, während du mit den anderen beiden Größen rechnest.
Hier kannst du zum Beispiel zuerst die Anzahl der Fische konstant halten, während du berechnest, wie eine Veränderung der Größe des Aquariums die Putzdauer verändert.
LösungWir wissen, dass Sofia für ein Aquarium mit $V=2~\text{m}^3$ und $10$ Fischen $2$ Stunden braucht.
Wollen wir wissen, wie lange sie für ein Aquarium mit $V=4~\text{m}^3$ und $10$ Fischen benötigt, können wir die Anzahl der Fische konstant halten. Wir teilen die Zuordnung $V=2~\text{m}^3$ und $2$ Stunden durch $2$ und erhalten:
$V=1~\text{m}^3$ entspricht $1$ Stunde.
Jetzt können wir mit $4$ multiplizieren und erhalten:
$V=4~\text{m}^3$ entsprechen $4$ Stunden.
- Damit erhalten wir als erste Zuordnung, dass sie für ein Aquarium mit $V=4~\text{m}^3$ und $10$ Fischen $4$ Stunden benötigt.
Wollen wir die Dauer für ein Aquarium mit $V=4~\text{m}^3$ und $5$ Fischen berechnen, dann halten wir die Größe des Aquariums konstant. Wir teilen die Zuordnung $10$ Fische und $4$ Stunden durch $10$ und erhalten:
$1$ Fisch entspricht $0{,}4$ Stunden.
Multiplizieren wir mit $5$, erhalten wir:
$5$ Fische entsprechen $2$ Stunden.
- Also benötigt sie für ein Aquarium mit $V=4~\text{m}^3$ und $5$ Fischen $2$ Stunden.
Genauso erhältst du:
- Für ein Aquarium mit $V=5~\text{m}^3$ und $5$ Fischen benötigt sie $2{,}5$ Stunden.
- Für ein Aquarium mit $V=10~\text{m}^3$ und $20$ Fischen benötigt sie $20$ Stunden.
-
Bestimme die korrekten Aussagen zum doppelten Dreisatz.
TippsBei Dreisätzen wendest du nur die Rechenarten Multiplikation und Division an.
Wenn eine Größe sich vergrößert, während eine andere Größe sich verkleinert, dann kann die Zuordnung dieser Größen nicht proportional sein.
LösungDiese Aussagen sind falsch:
- Beim Rechnen mit Dreisätzen addierst und subtrahierst du Zahlen zu unterschiedlichen Größen, die einander zugeordnet werden können.
- Du kannst nur bei gleichartigen Zuordnungen Rechnungen mit einem doppelten Dreisatz durchführen. Hast du also eine proportionale und eine antiproportionale Zuordnung, kann hier kein doppelter Dreisatz angewandt werden.
-
Erschließe, ob die Lösungen korrekt sind.
TippsErkenne zunächst, um welche Arten von Zuordnungen es sich hier handelt.
Rechne anschließend nacheinander mit beiden Zuordnungen.
LösungDiese Rechnung ist falsch:
- Zur Übung rechnet Luis alte Matheklausuren. Für $3$ Klausuren mit je $4$ Aufgaben braucht er $3$ Stunden. Dann braucht er für $2$ Klausuren mit jeweils $5$ Aufgaben $2$ Stunden.
Halten wir zunächst die Anzahl der Aufgaben ($4$) konstant, wissen wir:
$3$ Klausuren entsprechen $3$ Stunden.
Teilen wir durch $3$, erhalten wir:
$1$ Klausur entspricht $1$ Stunde.
Multiplizieren wir mit $2$:
$2$ Klausuren entsprechen $2$ Stunden.
Jetzt können wir die Anzahl der Klausuren ($2$) konstant halten:
$4$ Aufgaben entsprechen $2$ Stunden.
Teilen wir durch $4$, erhalten wir:
$1$ Aufgabe entspricht $0{,}5$ Stunde.
Multiplizieren wir mit $5$:
$5$ Aufgaben entsprechen $2{,}5$ Stunden.
Also braucht er für $2$ Klausuren mit je $5$ Aufgaben $2{,}5$ Stunden.
Rechnest du die anderen Aufgaben auf die gleiche Weise, erfährst du, dass diese Aufgaben richtig sind:
- Für eine Studie mit $20$ Teilnehmenden, in der $50$ Fragen ausgewertet werden sollen, braucht eine Wissenschaftlerin $10$ Tage. Dann braucht sie für eine Studie mit $40$ Teilnehmenden und $60$ Fragen $16$ Tage.
- $3$ Programmiererinnen schreiben in $4$ Stunden $200$ Zeilen Code. Dann schreiben $6$ Programmiererinnen in $5$ Stunden $500$ Zeilen.
- Ein Zug mit einer Geschwindigkeit von $200~\frac{\text{km}}{\text{h}}$ fährt in $3$ Stunden $600$ Kilometer. Dann fährt ein Zug mit $150~\frac{\text{km}}{\text{h}}$ in $4$ Stunden ebenfalls $600$ Kilometer.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt