Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Dreisatz bei Textaufgaben – proportional oder antiproportional?

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 187 Bewertungen
Die Autor*innen
Avatar
Team Digital
Dreisatz bei Textaufgaben – proportional oder antiproportional?
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Dreisatz bei Textaufgaben – proportional oder antiproportional? Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Dreisatz bei Textaufgaben – proportional oder antiproportional? kannst du es wiederholen und üben.
  • Tipps

    Entscheide zunächst, ob es sich um eine proportionale oder um eine antiproportionale Zuordnung handelt.

    Für einen größeren Betrag in Euro erhält Martin auch einen größeren Betrag in Dollar.

    Lösung

    Beim Geldtausch handelt es sich um eine proportionale Zuordnung:
    Je mehr Euro Martin tauscht, desto mehr Dollar bekommt er dafür.

    Aus der Fragestellung wissen wir, dass er für $150$ Euro genau $180$ Dollar erhält.
    Für den Zwischenschritt rechnen wir auf der linken Seite $: 3$ und kommen damit auf $150 : 3 = 50$.
    Da es sich um eine proportionale Zuordnung handelt, müssen wir auch rechts $: 3$ rechnen und erhalten: $180 : 3 = 60$.
    Um nun von $50$ auf den gesuchten Wert $400$ zu kommen, müssen wir $\cdot ~8$ rechnen.
    Ebenfalls $ \cdot ~8$ gerechnet, erhalten wir auf der rechten Seite $60 \cdot 8 = 480$.

    Antwort:

    Martin erhält für $400$ Euro genau $480$ Dollar.

  • Tipps

    Bei antiproportionalen Zuordnungen muss auf die zweite Größe stets die Umkehroperation angewendet werden.

    Rechnen wir zum Beispiel eine Größe $\cdot$ $3$, so müssen wir die andere Größe $:3$ rechnen.

    Je mehr Personen sich einen Kuchen teilen, desto kleiner werden die Stücke.

    Es besteht ein antiproportionaler Zusammenhang zwischen der Anzahl der Personen und der Größe der Kuchenstücke.

    Lösung

    Wir erkennen eine antiproportionale Zuordnung an der Form:

    • je mehr, desto weniger
    • je weniger, desto mehr

    Wenn ein Lottogewinn zwischen mehreren Personen aufgeteilt wird, dann liegt zwischen der Anzahl der Personen und der Gewinnsumme pro Person eine antiproportionale Zuordnung vor, weil der Gewinn pro Person geringer ist, wenn mehr Personen am Gewinn beteiligt sind.

    Erhalten zum Beispiel $6$ Personen jeweils einen Gewinn von $15\,000\,€$, würde der Gewinn für eine Person allein $\bf6$ $\cdot ~15\,000\,€ = 90\,000\,€$ betragen. Wird der Gewinn zwischen $5$ Personen aufgeteilt, so erhält jede*r:

    $90\,000\,€ :$ $\bf5$ $= 18\,000\,€$

    Die Rechenoperationen sind dabei immer genau entgegengesetzt: Wenn wir die Anzahl der Personen durch $6$ dividieren, dann müssen wir den Gewinn mit $6$ multiplizieren. Umgekehrt erhalten wir den Gewinn, indem wir durch $5$ dividieren, wenn wir die Personenzahl mit $5$ multiplizieren.

  • Tipps

    Bei einer proportionalen Zuordnung nehmen beide Größen gleichermaßen zu oder ab.

    Dies ist ein Beispiel für eine proportionale Zuordnung:

    Wenn nach $3$ Minuten $24$ Liter Wasser in ein Becken gelaufen sind, dann sind nach $6$ Minuten $48$ Liter Wasser im Becken. Nach der doppelten Zeit hat sich auch die Wassermenge verdoppelt.

    Lösung

    Wir erkennen eine proportionale Zuordnung daran, dass beide Größen gleichermaßen zu- oder abnehmen. Es besteht ein Zusammenhang dieser Art:

    • je mehr, desto mehr oder
    • je weniger, desto weniger

    Die beschriebenen Zuordnungen können wir folgendermaßen zuordnen:

    proportional

    • Anzahl der Wassereimer $\rightarrow$ Wassermenge in Litern: Je mehr Eimer, desto mehr Wasser.
    • Preis pro Liter Wasser $\rightarrow$ Kosten für das Befüllen eines Beckens: Je mehr ein Liter kostet, desto mehr kostet das Befüllen insgesamt.

    antiproportional

    • Volumen eines Eimers $\rightarrow$ Anzahl der benötigten Eimer, um ein Becken zu füllen: Je mehr in einen Eimer passt, desto weniger Eimer werden benötigt, um ein Becken zu füllen.
    • Anzahl der Pumpen $\rightarrow$ Zeit bis zum vollständigen Befüllen des Beckens: Je weniger Pumpen eingesetzt werden, desto länger dauert das Befüllen.

    Die Zuordnung Farbe eines Wassereimers $\rightarrow$ Wassermenge in Liter ist weder proportional noch antiproportional, da kein mathematischer Zusammenhang zwischen Farbe und Wassermenge besteht.

  • Tipps

    In der ersten Woche wird das Futter nur für die Pferde aus dem Stall benötigt. Das verbleibende Futter muss dann auf alle Pferde aufgeteilt werden.

    Je weniger Pferde satt werden müssen, desto länger reicht das Futter.

    Lösung

    Zwischen der Anzahl der zu versorgenden Pferde und der Zeitspanne, für die das Futter reicht, besteht eine antiproportionale Zuordnung, da mehr Pferde mehr Futter benötigen und die gleiche Futtermenge somit für einen kürzeren Zeitraum reicht.

    In der ersten Woche wird nur Futter für die $5$ Pferde im Stall benötigt. Die verbleibende Futtermenge würde für diese $5$ Pferde noch weitere $2$ Wochen oder $14$ Tage genügen. Ein einzelnes Pferd könnte man mit dem Futter für $14 \cdot 5 = 70$ Tage versorgen.
    Mit dem unerwarteten Besuch müssen von nun an $5 + 5 = 10$ Pferde versorgt werden. Das Futter wird für sie weitere $70 : 10 = 7$ Tage reichen.

    Damit reicht der Heuvorrat insgesamt $2$ Wochen: eine Woche für $5$ Pferde und eine weitere Woche für $10$ Pferde.

  • Tipps

    Überprüfe, wie sich die zweite Größe verändert, wenn die erste zunimmt.

    Beispiele für Zuordnungen:

    proportional:
    Je mehr Mäuse du hast, desto mehr Käse fressen sie.

    antiproportional:
    Je weniger Schüler helfen, desto länger dauert es, um den Schulgarten umzugraben.

    Lösung

    Um zwischen proportionalen und antiproportionalen Zuordnungen zu unterscheiden, betrachten wir, wie sich die zweite Größe verändert, wenn wir die erste Größe verändern.

    Eine Zuordnung ist:

    • proportional bei je mehr, desto mehr und je weniger, desto weniger
    • antiproportional bei je mehr, desto weniger und je weniger, desto mehr

    Eine Zuordnung kann daher nicht gleichzeitig proportional und antiproportional sein.

    Beispiele:

    • Mit zunehmender Einlaufzeit steigt auch das Wasservolumen in einer Badewanne.
    je mehr, desto mehr $\rightarrow$ proportional
    • Mit einer zunehmenden Anzahl von Wasserhähnen verringert sich die Zeit, bis die Wanne gefüllt ist.
    je mehr, desto weniger $\rightarrow$ antiproportional
  • Tipps

    Überlege zunächst, welche Art der Zuordnung vorliegt.

    Bei einer proportionalen Zuordnung müssen wir immer auf beiden Seiten mit derselben Zahl multiplizieren oder durch dieselbe Zahl dividieren.

    Bei einer antiproportionalen Zuordnung verwenden wir auf den beiden Seiten stets die Umkehroperation.

    Wandle, wenn nötig, die Einheiten um, zum Beispiel Stunden in Minuten.

    Lösung

    • Für mehr Muffins wird mehr Schokolade benötigt, es handelt sich hierbei um eine proportionale Zuordnung.
    Wenn für $10$ Muffins $200~\text{g}$ Schokolade benötigt werden, dann brauchen wir für die Hälfte, also $5$ Muffins, auch nur halb so viel Schokolade. Wir rechnen:

    $200~\text{g} : 2 = 100~\text{g}$

    Für die beiden Klassen sollen insgesamt $25 + 20 = 45$ Muffins gebacken werden, was das $9$-fache von $5$ Stück ist. Daher benötigen wir $9 \cdot 100~\text{g} = \mathbf{900~g}$ Schokolade.

    $\begin{array}{c|c} \text{Muffins} & \text{Schokolade} \\ \hline 10 & 200~\text{g} \\ 5 & 100~\text{g} \\ 45 & 900~\text{g} \end{array}$

    • Je mehr Lehrer beim Aufräumen der Küche helfen, desto weniger Zeit wird es in Anspruch nehmen. Die Zuordnung ist somit antiproportional.
    Wenn $2$ Lehrer*innen $3~\text{h} = 3 \cdot 60~\text{min} = 180~\text{min}$ brauchen, um die Küche aufzuräumen, dann würde eine Lehrkraft doppelt so lange, also $360~\text{min}$, benötigen. Mit vereinten Kräften brauchen alle $5$ Lehrerinnen und Lehrer zusammen nur ein Fünftel der Zeit. Wir rechnen:

    $360~\text{min} : 5 = 72~\text{min}$

    Das sind $\mathbf{1}$ Stunde und $\mathbf{12}$ Minuten.

    $\begin{array}{c|c} \text{Lehrer} & \text{Zeit} \\ \hline 2 & 180~\text{min} \\ 1 & 360~\text{min} \\ 5 & 72~\text{min} \end{array}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden