30 Tage kostenlos testen: Mehr Spaß am Lernen.
30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage kostenlos testen

Wurzelfunktion als Umkehrfunktion der quadratischen Funktion 04:50 min

Textversion des Videos

Transkript Wurzelfunktion als Umkehrfunktion der quadratischen Funktion

Hallo. In diesem Video wird es um die Wurzelfunktion als Umkehrfunktion der Quadratischen Funktion gehen.

Was benötigst du als Vorwissen? Du solltest eine Vorstellung von der quadratischen Funktion und von Zuordnungen haben. In diesem Zusammenhang solltest du auch wissen, was es heißt, dass man den Definitionsbereich einer Funktion einschränkt. Von besonderer Wichtigkeit wird natürlich der Begriff der Umkehrfunktion sein, den du zumindest schon einmal gehört haben solltest.

Wir betrachten folgende Ausgangssituation: Bei einem Haus mit quadratischer Grundfläche ändert sich je nach Seitenlänge die Grundfläche. Wir bezeichnen die Seitenlänge daher mit x. Diese ist selbstverständlich stets größer oder gleich Null. Die Grundfläche des Hauses ist nun abhängig von der Seitenlänge, also gilt: A(x)=x2. Da x größer oder gleich Null ist, muss auch x2 größer oder gleich Null sein. In einem Koordinatensystem, in dem der Flächeninhalt A in Quadratmetern in Abhängigkeit von der Seitenlänge x in Metern dargestellt wird, ergibt sich folgender Graph. Dies ist das Schaubild der Normalparabel, eingeschränkt auf die positiven reellen Zahlen. Die Größe der Grundfläche des Hauses wächst quadratisch in Abhängigkeit von der Seitenlänge. Wenn wir aber nun eine bestimmte Grundfläche des Hauses, z.B. 100 Quadratmeter, gegeben haben und ablesen wollen, wie lang dann x sein muss, ist es auch möglich, die Seitenlänge x in Abhängigkeit vom Flächeninhalt A darzustellen, d.h. wir vertauschen die x- und y-Achse. Aus x in Metern wird nun A in Quadratmetern und aus A in Quadratmetern wird x in Metern. Der Graph wird nun an der Ursprungsgeraden t mit t(x)=x gespiegelt. Damit haben wir die Seitenlänge x in Abhängigkeit zu dem Flächeninhalt A dargestellt. Wichtig dabei ist, dass x größer gleich Null ist. Bei dem dargestellten Graphen handelt es sich nicht mehr um eine quadratische Funktion, sondern um eine Wurzelfunktion, die die Umkehrfunktion einer quadratischen Funktion ist.

Wir wollen die graphische Veranschaulichung nun Formalisieren. Für die quadratische Funktion f(x)=x2 sei x eine beliebige reelle Zahl, die größer oder gleich Null ist. Wegen x größer gleich Null, ist auch x2 größer oder gleich Null. Außerdem tritt kein Funktionswert doppelt auf. Daher existiert eine Umkehrfunktion g, sodass g(x2)=x ist. Setzt man nun x2=y, dann ist x=Wurzel aus (y) wegen x≥0 äquivalent dazu. Also ist g(y)=Wurzel aus (y). Bezeichnen wir die unabhängige Größe noch wie üblich mit x, dann ergibt sich g(x)=Wurzel aus (x) als Umkehrfunktion der quadratischen Funktion und diese ist, wie man gut erkennen kann, die Wurzelfunktion.

Schauen wir uns ein paar Eigenschaften der Wurzelfunktion an. Dazu soll uns in Anlehnung an unser Eingangsbeispiel die folgende kleine Skizze mit der Wurzelfunktion f reichen. Der Definitions- und Wertebereich besteht aus allen positiven reellen Zahlen. Es ist weiterhin f(0)=wurzel aus 0=0, womit x=0 eine Nullstelle der Wurzelfunktion. Die Wurzelfunktion ist eine monoton steigende Funktion. Der Grenzwert für x gegen plus unendlich ist damit auch plus unendlich. Fassen wir zusammen. Abhängigkeiten können in einem Koordinatensystem mit Hilfe der Ursprungsgeraden t(x)=x vertauscht werden. Ist die quadratische Funktion f(x)=x2 nur für positive x-Werte definiert, dann besitzt diese eine Umkehrfunktion g. g heißt Wurzelfunktion und besitzt die Funktionsgleichung g(x)=Wurzel aus x.

1 Kommentar
  1. Default

    richtig!
    =D

    Von Alfred 4, vor mehr als 2 Jahren