Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Wahrscheinlichkeit – Beispiel Würfeln

Tauche ein in die Welt des Lymphsystems: Entdecke seine Bestandteile, wie die lymphatischen Organe und das Lymphgefäßsystem. Finde heraus, wie es Krankheitserreger bekämpft und den Körper schützt. Bereit für eine spannende Reise durch den Körper? Erfahre mehr über das Lymphsystem und seine Funktionen!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Wahrscheinlichkeit – Beispiel Würfeln

Was versteht man unter einem Zufallsversuch beim Würfelwurf?

1/5
Bewertung

Ø 4.0 / 101 Bewertungen
Die Autor*innen
Avatar
Team Digital
Wahrscheinlichkeit – Beispiel Würfeln
lernst du in der 5. Klasse - 6. Klasse

Wahrscheinlichkeit – Beispiel Würfeln Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Wahrscheinlichkeit – Beispiel Würfeln kannst du es wiederholen und üben.
  • Tipps

    Ein weiteres Beispiel für einen Zufallsversuch ist das Werfen einer Münze.

    Eine Münze kannst du immer wieder werfen und erhältst jedes Mal „Kopf“ oder „Zahl“.

    Lösung

    Wir sprechen von einem Zufallsversuch, wenn er beliebig oft unter immer gleichen Bedingungen wiederholbar ist. Dabei sind alle möglichen Ausgänge vorab bekannt, der konkrete Ausgang eines Versuchs ist aber nicht vorhersehbar.

    Bei einem Laplace-Experiment muss zudem gelten, dass alle möglichen Ausgänge gleich wahrscheinlich sind. Das ist beim Würfeln der Fall, wenn alle Seiten des Würfels dieselbe Fläche haben.

  • Tipps

    Das Würfeln ist ein Laplace-Experiment mit sechs möglichen Ergebnissen.

    Bei einem Laplace-Experiment kannst du die Wahrscheinlichkeit für ein Ereignis berechnen, indem du die Anzahl der günstigen Ergebnisse durch die Anzahl der möglichen Ergebnisse teilst.

    Für die Angabe in Prozent wandelst du den Bruch in einen Dezimalbruch um und multiplizierst mit $100$:

    $\frac{3}{4} = 0,75 = 75,0~\%$

    Lösung

    Da bei einem Würfel alle Seiten gleich groß sind, handelt es sich um ein Laplace-Experiment.
    Bei einem Laplace-Experiment kannst du die Wahrscheinlichkeit für ein Ereignis mit der folgenden Formel berechnen:

    $P(\text{E}) = \frac{\text{Anzahl der günstigen Ergebnisse}}{\text{Anzahl der möglichen Ergebnisse}}$

    Bei einem sechsseitigen Würfel gibt es die sechs möglichen Ergebnisse $1$, $2$, $3$, $4$, $5$ und $6$. Daher steht im Nenner immer eine $6$. Wir müssen uns für die einzelnen Ereignisse jeweils noch die Anzahl der günstigen Ergebnisse überlegen.

    Beispiel 1: Es wird eine $3$ gewürfelt.

    Hier ist das einzige günstige Ergebnis die $3$, es gilt also:

    $P(3) = \frac{1}{6} \approx 16,67~\%$

    Beispiel 2: Die gewürfelte Zahl ist größer als $4$.

    In dem Fall gibt es zwei günstige Ergebnisse: die $5$ und die $6$. Also gilt:

    $P(5 , 6) = \frac{2}{6} = \frac{1}{3} \approx 33,33~\%$

  • Tipps

    Überlege dir Beispiele von Ereignissen, um die Aussagen zu prüfen.

    Das Ereignis „Zahl ist kleiner als $3$“ hat die Wahrscheinlichkeit $\frac{2}{6}$, weil es die beiden Ergebnisse $1$ und $2$ umfasst.
    Dasselbe gilt für das Ereignis „Zahl ist größer als $4$“: Auch hier umfasst das Ereignis zwei Ergebnisse, $5$ und $6$, und hat daher die Wahrscheinlichkeit $\frac{2}{6}$.

    Lösung

    Beim Würfeln mit einem sechsseitigen Würfel handelt es sich um ein Laplace- Experiment mit den sechs möglichen Ergebnissen $1$, $2$, $3$, $4$, $5$ und $6$. Die Wahrscheinlichkeit für ein Ereignis können wir daher mit folgender Formel berechnen:
    $P(\text{E}) = \frac{\text{Anzahl der günstigen Ergebnisse}}{6}$

    Maßgeblich für die Wahrscheinlichkeit ist also die Anzahl der günstigen Ergebnisse, die zu einem Ereignis gehören, unabhängig davon, welche Ergebnisse es genau sind.

    Diese Aussagen sind falsch:

    • Die Wahrscheinlichkeit, eine bestimmte Zahl zu würfeln, ist $6~\%$.
    Eine bestimmte Zahl ist immer genau ein Ergebnis und hat damit die Wahrscheinlichkeit $\frac{1}{6} \approx 16,67~\%$.
    • Zwei Ereignisse können nur gleich wahrscheinlich sein, wenn sie dieselben Ergebnisse umfassen.
    Die beiden Ereignisse „Zahl ist kleiner als $3$“ und „Zahl ist größer als $4$“ umfassen unterschiedliche Ergebnisse. Weil allerdings beide je zwei günstige Ergebnisse beinhalten, haben beide dieselbe Wahrscheinlichkeit, nämlich $\frac{2}{6} = \frac{1}{3} \approx 33,33~\%$.
    • Es ist wahrscheinlicher, eine gerade Zahl zu würfeln, als eine ungerade Zahl zu würfeln.
    Beide Ereignisse umfassen jeweils drei günstige Ergebnisse und haben deshalb dieselbe Wahrscheinlichkeit, und zwar $\frac{3}{6} = \frac{1}{2} = 50~\%$.

    Diese Aussagen sind richtig:

    • Je mehr der möglichen Ergebnisse zu einem Ereignis gehören, desto größer ist die Wahrscheinlichkeit für das Ereignis.
    Bei zwei Brüchen, die den gleichen Nenner haben, hat der den größeren Wert, bei dem der Zähler größer ist. Da der Nenner hier immer $6$ (Anzahl aller möglichen Ergebnisse) ist, hat ein Ereignis mit mehr günstigen Ergebnissen eine höhere Wahrscheinlichkeit. Ein Beispiel ist im Übrigen die folgende Aussage.
    • Es ist wahrscheinlicher, eine gerade Zahl zu würfeln, als eine $1$ zu würfeln.
    Ein Würfel hat drei gerade Zahlen: $2$, $4$ und $6$. Deswegen ist die Wahrscheinlichkeit $\frac{3}{6} = \frac{1}{2} = 50~\%$. Um eine $1$ zu würfeln, ist das einzige günstige Ergebnis die $1$. Somit ist die Wahrscheinlichkeit mit $\frac{1}{6} \approx 16,67~\%$ geringer.
  • Tipps

    Überlege dir, wie viele Ergebnisse zu jedem Ereignis passen.

    Zum Beispiel gibt es auf einem Würfel zwei Zahlen, die kleiner als $3$ sind: die $1$ und die $2$. Daher hat das Ereignis „Ergebnis ist kleiner als $3$“ die Wahrscheinlichkeit $\frac{2}{6} = \frac{1}{3} \approx 33,33~\%$.

    Lösung

    Bei einem Laplace-Experiment kannst du die Wahrscheinlichkeit für ein Ereignis mit der folgenden Formel berechnen:
    $P(\text{E}) = \frac{\text{Anzahl der günstigen Ergebnisse}}{\text{Anzahl der möglichen Ergebnisse}}$

    Bei einem sechsseitigen Würfel gibt es die sechs möglichen Ergebnisse $1$, $2$, $3$, $4$, $5$ und $6$. Daher steht im Nenner immer eine $6$. Wir müssen uns für die einzelnen Ereignisse jeweils noch die Anzahl der günstigen Ergebnisse überlegen.

    Beispiel 1:
    $\text{E}_1$: Es wird eine $5$ gewürfelt.
    Hier ist das einzige günstige Ergebnis die $5$, sodass sich ergibt:
    $P(\text{E}_1) = {\frac{1}{6}} \approx 16,67~\%$

    Beispiel 2:
    $\text{E}_2$: Das Ergebnis ist eine ungerade Zahl.
    Hier gibt es drei günstige Ergebnisse, nämlich die $1$, $3$ und $5$. Somit ergibt sich:
    $P(\text{E}_2) = \frac{3}{6} = {\frac{1}{2}} = 50~\%$

    Beispiel 3:
    $\text{E}_3$: Es wird eine $2$ oder eine $5$ gewürfelt.
    Hier gibt es zwei günstige Ergebnisse: die $2$ und die $5$. Deshalb ergibt sich:
    $P(\text{E}_3) = \frac{2}{6} = {\frac{1}{3}} \approx 33,33~\%$

    Beispiel 4:
    $\text{E}_4$: Das Ergebnis ist kleiner als $6$.
    Hier gibt es fünf günstige Ergebnisse, und zwar $1$, $2$, $3$, $4$ und $5$. Darum ergibt sich:
    $P(\text{E}_4) = {\frac{5}{6}} \approx 83,33~\%$

  • Tipps

    Die Wahrscheinlichkeit erhältst du, indem du die Anzahl der günstigen Ergebnisse durch die Anzahl der möglichen Ergebnisse teilst. Bei einem Würfel gibt es sechs mögliche Ergebnisse.

    Lösung

    Bei einem Laplace-Experiment wie dem Würfelwurf kannst du die Wahrscheinlichkeit für ein Ereignis mit der folgenden Formel berechnen:
    $P(\text{E}) = \frac{\text{Anzahl der günstigen Ergebnisse}}{\text{Anzahl der möglichen Ergebnisse}}$

    Bei einem sechsseitigen Würfel gibt es die sechs möglichen Ergebnisse $1$, $2$, $3$, $4$, $5$ und $6$. Daher steht im Nenner immer eine $6$. Wir müssen uns noch die Anzahl der günstigen Ergebnisse überlegen.
    Das Ereignis „gerade Zahl“ setzt sich aus den drei Ergebnissen $2$, $4$ und $6$ zusammen. Im Zähler brauchen wir hier also eine $3$.

    Den so entstandenen Bruch $\frac{3}{6}$ können wir dann mit $3$ kürzen und erhalten $\frac{1}{2}$.
    Das bedeutet: In der Hälfte aller Fälle zeigt der Würfel eine gerade Zahl, was einer Wahrscheinlichkeit von $50~\%$ entspricht.

  • Tipps

    Bei einem zehnseitigen Würfel gibt es zehn mögliche Ergebnisse, und zwar:

    $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$ und $10$

    Die Wahrscheinlichkeiten ergeben sich über diese Formel:

    $P(\text{E}) = \frac{\text{Anzahl der günstigen Ergebnisse}}{\text{Anzahl der möglichen Ergebnisse}}$

    Primzahlen sind Zahlen, die nur durch sich selbst und durch $1$ teilbar sind, zum Beispiel $13$. Die Zahl $2$ ist die kleinste Primzahl. (Die $1$ hat nur einen Teiler, ist also keine Primzahl.)

    Lösung

    Auch beim Würfeln mit einem zehnseitigen Würfel handelt es sich um ein Laplace-Experiment. Da es dabei zehn mögliche Ergebnisse gibt, nämlich $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$ und $10$, berechnen sich die Wahrscheinlichkeiten nach dieser Formel:

    $P(\text{E}) = \frac{\text{Anzahl der günstigen Ergebnisse}}{10}$

    Wir müssen uns also für die einzelnen Ereignisse jeweils noch die Anzahl der günstigen Ergebnisse überlegen.

    Beispiel 1: Es wird eine gerade Zahl gewürfelt.
    Auf einem zehnseitigen Würfel gibt es fünf gerade Zahlen: $2$, $4$, $6$, $8$ und $10$. Damit erhalten wir für die Wahrscheinlichkeit:
    $\frac{5}{10} = {\frac{1}{2}} = 50~\%$

    Beispiel 2: Das Ergebnis ist kleiner als $4$.
    Auf einem zehnseitigen Würfel gibt es drei Zahlen, die kleiner sind als $4$: $1$, $2$ und $3$. Somit ermitteln wir für die Wahrscheinlichkeit:
    ${\frac{3}{10}} = 30~\%$

    Beispiel 3: Es wird eine $5$ oder eine größere Zahl gewürfelt.
    Auf einem zehnseitigen Würfel sind sechs Zahlen, die $5$ oder größer als $5$ sind: $5$, $6$, $7$, $8$, $9$ und $10$. Damit erhalten wir für die Wahrscheinlichkeit:
    $\frac{6}{10} = {\frac{3}{5}} = 60~\%$

    Beispiel 4: Das Ergebnis ist eine Primzahl.
    Primzahlen sind Zahlen, die nur durch sich selbst und durch 1 teilbar sind. Die Zahl $2$ ist die kleinste Primzahl. (Die $1$ hat nur einen Teiler, ist also keine Primzahl.)
    Insgesamt gibt es auf einem zehnseitigen Würfel vier Primzahlen: $2$, $3$, $5$ und $7$. Somit ermitteln wir für die Wahrscheinlichkeit:
    $\frac{4}{10} = {\frac{2}{5}} = 40~\%$

    Beispiel 5: Das Ergebnis ist keine $5$.
    Auf einem zehnseitigen Würfel gibt es neun Zahlen, die nicht $5$ sind: $1$, $2$, $3$, $4$, $6$, $7$, $8$, $9$ und $10$. Damit ergibt sich für die Wahrscheinlichkeit:
    ${\frac{9}{10}} = 90~\%$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.225

Lernvideos

38.691

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

Pommes der Pinguin hält einen großen gelben Stern in den Händen
Pommes der Pinguin hält einen großen gelben Stern in den Händen
30 Tage kostenlos testen
30 Tage kostenlos testen
Über 1,6 Millionen Schüler*innen nutzen sofatutor Über 1,6 Millionen Schüler*innen nutzen sofatutor
Lernpakete anzeigen
Lernpakete anzeigen
Lernpakete anzeigen