Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Summenregel für Wahrscheinlichkeiten – Beispiele

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.6 / 88 Bewertungen
Die Autor*innen
Avatar
Steve Taube
Summenregel für Wahrscheinlichkeiten – Beispiele
lernst du in der 8. Klasse - 9. Klasse - 10. Klasse

Summenregel für Wahrscheinlichkeiten – Beispiele Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Summenregel für Wahrscheinlichkeiten – Beispiele kannst du es wiederholen und üben.
  • Tipps

    In diesem Zufallsversuch kannst du die Wahrscheinlichkeit der Ereignisse (und auch die der Ergebnisse) berechnen, indem du die Felder des Glücksrades zählst. Diese Anzahl dividierst du durch die Gesamtzahl der Felder.

    Beachte, dass entweder das eine oder das andere Ergebnis eintritt. Es ist nicht möglich, dass zwei verschiedene Ergebnisse gleichzeitig eintreten.

    Beachte für die Addition: Summand $+$ Summand $=$ Summe.

    Lösung

    Das Drehen des abgebildeten Pfeiles, welcher sich in der Mitte eines Glücksrades befindet, ist ein Zufallsexperiment. Die Ergebnisse dieses Zufallsexperimentes sind die Farben, auf welche der Pfeil zeigt. Die Ergebnisse werden zusammengefasst zu der Ergebnismenge.

    Ein Ereignis ist jeder beliebige Ausgang, den du bei diesem Zufallsexperiment erhalten kannst. Ein Ereignis ist also eine Teilmenge der Ergebnismenge.

    Schauen wir uns ein Beispiel für ein Ereignis an. $A$: Der Pfeil zeigt auf ein blaues oder rotes Feld.

    Es gilt also $A=E_1\cup E_4$. So erhältst du $P(A)=P\left(E_1\cup E_4\right)$. Nun kannst du die einzelnen Wahrscheinlichkeiten der Ergebnisse addieren und erhältst $P(A)=P\left(E_1\right)+P\left(E_4\right)=\frac2{12}+\frac4{12}=\frac6{12}=\frac12$.

    Dies ist die sogenannte Summenregel für Wahrscheinlichkeiten:

    Betrachte ein Ereignis $A$, welches sich aus den Ergebnissen $E_1$, $E_2$ sowie $E_3$ zusammensetzt. Du kannst die Wahrscheinlichkeit dann so berechnen: $P(A)=P\left(E_1\right)+P\left(E_2\right)+P\left(E_3\right)$.

    Zusammengefasst gilt: Die Wahrscheinlichkeit eines Ereignisses, das sich aus mehreren Ergebnissen zusammensetzt, ist gleich der Summe der Wahrscheinlichkeiten der einzelnen Ergebnisse.

  • Tipps

    Hier siehst du die Summenregel. Sei $E=A\cup B$ mit den Ergebnissen $A$ und $B$. Dann gilt $P(E)=P(A)+P(B)$.

    In dem Ereignis „nicht $A$“ befinden sich alle Ergebnisse, welche nicht $A$ sind.

    Erst wenn du die Summenregeln verwendest, wird addiert.

    Lösung

    Es soll die Wahrscheinlichkeit $P(„\text{nicht } A“)$ berechnet werden. Du verwendest hierfür die Summenregel. Zunächst musst du also das Ereignis „nicht $A$“ als Vereinigung von Ergebnissen schreiben: „nicht $A$“$=B\cup C$.

    Damit ist $P(„\text{nicht } A“)=P(B\cup C)=P(B)+P(C)$. Die benötigten Wahrscheinlichkeiten kannst du der nebenstehenden Skizze entnehmen. Dies führt zu

    $P(„\text{nicht } A“)=\frac7{30}+\frac1{30}=\frac8{30}=\frac4{15}$.

    Es gilt übrigens $P(A)+P(„\text{nicht } A“)=1$ und damit $P(„\text{nicht } A“)=1-P(A)$.

  • Tipps

    In $A$ befinden sich alle Ergebnisse, bei welchen der Pfeil nicht auf ein rotes Feld zeigt.

    Beachte $P\left(E_4\right)=\frac4{12}$ und damit $P(A)=1-\frac4{12}$.

    Du kannst zur Kontrolle auch alle nicht roten Felder zählen und diese Anzahl durch die Gesamtzahl der Felder auf dem Glücksrad dividieren.

    Lösung

    Die Wahrscheinlichkeiten, ein entsprechend farbiges Feld zu drehen, erhältst du so: Du zählst die Anzahl der Felder mit dieser Farbe. Dann dividierst du dieses Anzahl durch $12$, die Gesamtzahl der Felder auf dem Glücksrad.

    So kommst du zu den Wahrscheinlichkeiten der Ergebnisse:

    • $E_1$: Der Pfeil zeigt auf ein blaues Feld, also $P\left(E_1\right)=\frac5{12}$.
    • $E_2$: Der Pfeil zeigt auf ein grünes Feld, also $P\left(E_2\right)=\frac1{12}$.
    • $E_3$: Der Pfeil zeigt auf ein gelbes Feld, also $P\left(E_3\right)=\frac2{12}$.
    • $E_4$: Der Pfeil zeigt auf ein rotes Feld, also $P\left(E_4\right)=\frac4{12}$.
    Das Ereignis $A$ ist die Vereinigung der Ergebnisse $E_1$, $E_2$ sowie $E_3$. Das bedeutet $A=E_1\cup E_2\cup E_3$.

    Damit ist $P(A)=P\left(E_1\cup E_2\cup E_3\right)$. Nun kannst du die Summenregel verwenden:

    $P(A)=P\left(E_1\right)+P\left(E_2\right)+P\left(E_3\right)=\frac5{12}+\frac1{12}+\frac2{12}=\frac8{12}=\frac23$.

    Diese Wahrscheinlichkeit erhältst du auch, wenn du alle nicht roten Felder zählst. Dies sind $8$ Felder. Dividiere die Anzahl durch $12$. Dies ist die Gesamtzahl der Felder. So erhältst du $P(A)=\frac8{12}=\frac23$.

  • Tipps

    Du darfst in dieser Aufgabe davon ausgehen, dass alle Hunde reinrassig sind. Es gibt also zum Beispiel keinen Beagle-Collie-Mischling.

    Verwende die Summenregel für Wahrscheinlichkeiten. Ist $E=A\cup B$, dann gilt $P(E)=P(A)+P(B)$. Dabei sind $A$ und $B$ Ergebnisse. In diesem Beispiel sind dies die verschiedenen Hunderassen.

    Du kannst diese Formel auch anwenden, wenn sich das Ereignis $E$ aus mehr als zwei Ergebnissen zusammensetzt.

    Es ist $P(C)=0,24$ die Wahrscheinlichkeit, einen Collie zu treffen.

    Ebenso kannst du $P(S)=0,08$ und $P(G)=0,32$ berechnen.

    Lösung

    Stelle dir den Wald als eine Urne vor, in der sich $25$ Hunde befinden. Davon sind $9$ Golden Retriever, $8$ Beagles, $2$ Schäferhunde und $6$ Collies. Paul zieht nun zufällig einen Hund aus dieser Urne.

    Dies entspricht dem zufälligen Treffen eines Hundes. Du kannst zunächst die Wahrscheinlichkeiten für jede der vier Hunderassen berechnen.

    • $P(G)=\frac9{25}=0,36$
    • $P(B)=\frac8{25}=0,32$
    • $P(S)=\frac2{25}=0,08$
    • $P(C)=\frac6{25}=0,24$
    Addiere doch einmal all diese Wahrscheinlichkeiten. Du erhältst dann $1$.

    Nun kann es losgehen. Du sollst die Wahrscheinlichkeiten von drei verschiedenen Ereignissen berechnen.

    Paul trifft keinen Beagle.

    • „nicht $B$“$=G\cup S\cup C$
    • Damit ist $P($„nicht $B$“$)=P(G)+P(S)+P(C)=0,36+0,08+0,24=0,68$.
    Paul trifft entweder einen Golden Retriever oder einen Schäferhund.

    Wieder verwendest du die Summenregel $P(G\text{ oder }S)=P(G)+P(S)=0,36+0,08=0,44$.

    Paul trifft entweder einen Golden Retriever, einen Beagle oder einen Collie.

    Dieses Mal rechnest du so: $P(G\text{ oder }B\text{ oder } C)=P(G)+P(B)+P(C)=0,36+0,32+0,24=0,92$.

  • Tipps

    Auf dem Glücksrad befinden sich insgesamt $12$ Felder.

    Nimm einmal an, es wären $7$ der $12$ Felder rot. Dann erhältst du die folgende Wahrscheinlichkeit dafür, dass der Pfeil auf ein rotes Feld zeigt: $P($ rot $)=\frac7{12}$.

    Du dividierst also die Anzahl der Felder in der gegebenen Farbe durch die Gesamtzahl der Felder.

    Lösung

    Um die Summenregel für Wahrscheinlichkeiten anzuwenden, musst du zunächst die Wahrscheinlichkeiten von Ergebnissen berechnen. Bei dem gegebenen Zufallsexperiment sind die Ergebnisse gegeben durch:

    • $E_1$: Der Pfeil zeigt auf ein blaues Feld.
    • $E_2$: Der Pfeil zeigt auf ein grünes Feld.
    • $E_3$: Der Pfeil zeigt auf ein gelbes Feld.
    • $E_4$: Der Pfeil zeigt auf ein rotes Feld.
    Allgemein berechnest du die Wahrscheinlichkeit für ein solches Ergebnis so: Du dividierst die Anzahl der Felder in der entsprechenden Farbe durch die Gesamtzahl $12$ aller Felder. So erhältst du

    • $P\left(E_1\right)=\frac5{12}$,
    • $P\left(E_2\right)=\frac1{12}$,
    • $P\left(E_3\right)=\frac2{12}$ und
    • $P\left(E_4\right)=\frac4{12}$.
    Übrigens: Wenn du all diese Wahrscheinlichkeiten addierst, erhältst du $1$.

  • Tipps

    Prüfe, ob die folgende Bedingung erfüllt ist: $P(A)+P(B)+P(C)=1$.

    Verwende $P(A\cup B)=P(A)+P(B)$. Gleiches gilt analog bei den beiden anderen Verknüpfungen der Ergebnisse.

    Um diese Aufgabe zu lösen, kannst du ein Gleichungssystem aufstellen. Dabei sind die unbekannten Wahrscheinlichkeiten die drei gesuchten Größen. Die gegebenen Wahrscheinlichkeiten der Ereignisse führen zu den drei Gleichungen.

    Es ist $P(A)=0,2$.

    Lösung

    Verwende die bekannten Wahrscheinlichkeiten. Dabei wendest du jedes Mal die Summenregel für Wahrscheinlichkeiten an.

    • $P(A\cup B)=P(A)+P(B)=0,5$
    • $P(A\cup C)=P(A)+P(C)=0,7$
    • $P(B\cup C)=P(B)+P(C)=0,8$
    Subtrahiere von der oberen Gleichung die mittlere. Dies führt zu $P(B)-P(C)=-0,2$.

    Nun kannst du diese Gleichung und die untere Gleichung addieren. So erhältst du $2\cdot P(B)=0,6$. Schließlich dividierst du durch $2$. So kommst du zu $P(B)=0,3$.

    Damit gilt:

    • $P(A)+0,3=0,5$: Subtrahiere $0,3$. So kommst du zu $P(A)=0,2$.
    • $0,3+P(C)=0,8$: Wieder subtrahierst du $0,3$, um zu $P(C)=0,5$ zu gelangen.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.211

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden