Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Verschachtelte Klammern

Lerne die Regeln für verschachtelte Klammern mit Variablen kennen und entdecke, warum die Reihenfolge der Auflösung entscheidend sein kann. Mit einfachen Beispielen und Tipps wird dir geholfen, komplexe Terme erfolgreich zu vereinfachen. Interessiert? Das und vieles mehr findest du im folgenden Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Verschachtelte Klammern

Was bedeutet es, wenn in einem Term mehrere Klammern stehen, die ineinander geschachtelt sind?

1/5
Bewertung

Ø 3.8 / 149 Bewertungen
Die Autor*innen
Avatar
Team Digital
Verschachtelte Klammern
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Verschachtelte Klammern Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Verschachtelte Klammern kannst du es wiederholen und üben.
  • Tipps

    Beispiel: $ ( 2x \cdot \underbrace{( 5 + 3 )}_{\text{innere Klammer}} ) $

    Punkt-vor-Strich-Regel:

    Zur Punktrechnung zählen Multiplikation und Division und zur Strichrechnung zählen Addition und Subtraktion.

    Beispiel:
    $ 2 - 5 \cdot 2y = 2 - 10y$
    Hier muss also erst multipliziert werden: $ 5 \cdot 2y = 10y $.

    Lösung

    Für Terme mit verschachtelten Klammern gibt es Regeln, die du befolgen musst, um die Terme zu berechnen bzw. zu vereinfachen.

    Mit der innersten Klammer beginnen.
    Die erste Regel bezieht sich auf die Klammern. In einer Rechnung können mehrere Klammern vorkommen. Dabei ist es wichtig, dass du mit der innersten Klammer anfängst, diese soweit wie möglich berechnest und dann von innen nach außen arbeitest.
    $3 \cdot [7a-2a \cdot (8-6)] $
    Wir beginnen mit der Rechnung $8-6 = 2$ in der inneren Klammer und lösen dann weiter auf. Es ergibt sich:
    $3 \cdot [7a-2a \cdot (8-6)] = 3 \cdot [7a-2a \cdot 2] = 3 \cdot [7a-4a] = 3 \cdot 3a = 9a$

    Vorfaktor vor der Klammer bezieht sich auf alle Summanden.
    Die zweite Regel bezieht sich auf den Vorfaktor vor Klammern.
    $ 2 \cdot (2x +6)$
    Hier wird die $2$ mit jedem Term in der Klammer multipliziert.
    $ 2 \cdot (2x +6) = 2 \cdot 2x + 2 \cdot 6 = 4x +12 $

    Minuszeichen vor der Klammer ändert die Vorzeichen in der Klammer.
    Die dritte Regel bezieht sich auf den Fall, dass ein Minus vor der Klammer steht.
    $ - ( x - 5) $
    Dies ist ein Sonderfall der Vorfaktor-Regel, da man auch statt dem $-$ ein $ \cdot (-1) $ schreiben kann und somit alle Terme in der Klammer mit $ \cdot (-1) $ verrechnet werden. Somit drehen sich alle Vorzeichen um. Es ergibt sich:
    $-(x-5)=-x+5$

    Punkt vor Strich
    Die vierte Regel ist die Punkt-vor-Strich-Regelung. Zur Punktrechnungen zählen Multiplikation und Division und zur Strichrechnung zählen Addition und Subtraktion. Das heißt, es muss immer erst multipliziert und dividiert werden, und erst danach addiert und subtrahiert.
    $ ( 7x + 3 \cdot 4x ) + 5x $
    Hier muss also in der Klammer $3 \cdot 4x$ zuerst gerechnet werden.
    $( 7x + 3 \cdot 4x ) + 5x = ( 7x + 12x ) + 5x = 19x + 5x = 24x $

    Hinweis: Beachte, dass die Regel Klammer zuerst Vorrang vor der Punkt-vor-Strich-Regel gilt.

  • Tipps

    Denke daran, die Klammern von innen nach außen aufzulösen. Faktoren, die vor oder hinter einer Klammer stehen, werden dabei mit jedem Element in der Klammer multipliziert.

    Achte auf die richtigen Rechen- und Vorzeichen.

    Lösung

    Die Aufgaben werden folgendermaßen gelöst:

    Erste Aufgabe:

    $ 4x + [ 3 - ( 2x -7) ] $
    $ \mapsto $ Die innere Minusklammer wird aufgelöst, Vorzeichen drehen sich um:
    = $ 4x + [ 3 - 2x +7 ] $
    $ \mapsto $ In der Klammer wird so weit wie möglich vereinfacht:
    = $ 4x + [ 10 - 2x ] $
    $ \mapsto $ Die äußere Klammer fällt weg:
    = $ 4x + 10 - 2x $
    $ \mapsto $ Der Term wird zusammengefasst:
    $ 2x+ 10 $

    Zweite Aufgabe:

    $ 3 \cdot [ 7a - 2a \cdot (8-6)] $
    $ \mapsto $ Die innere Klammer wird berechnet:
    = $ 3 \cdot [ 7a - 2a \cdot 2 ]$
    $ \mapsto $ Punkt vor Strich wird beachtet:
    = $ 3 \cdot [ 7a - 4a ]$
    $ \mapsto $ Die zweite Klammer wird berechnet:
    = $ 3 \cdot 3a$
    $ \mapsto $ Der Vorfaktor wird mit der Klammer multipliziert:
    = $9a$

  • Tipps

    Achte darauf, dass ein Minuszeichen vor der Klammer die Rechenzeichen in der Klammer umkehrt.

    Beispiel:

    $9z - [5 \cdot (2z - 10) + 5z] =$
    $9z - [10z - 50 + 5z] =$
    $9z - [15z - 50] =$
    $9z - 15z + 50 =$
    $-6z + 50$

    Lösung

    Bei dieser Aufgabe sollst du die Terme richtig zusammenfassen und dabei die Regeln beachten. Die einzelnen Terme sind ähnlich, nur die Vorzeichen und Klammern unterscheiden sich. Deshalb ist es wichtig, die Regeln Klammern zuerst und Punktrechnung vor Strichrechnung zu beachten.

    Erste Aufgabe:
    $ -(7x+5x) + 15y \cdot (3+4) $
    $ = -12x + 15y \cdot 7 \quad$ Wir berechnen zuerst beide Klammern.
    $ = -12x + 105y $

    Zweite Aufgabe:
    $ [(7x-5x) \cdot 3] +15y $
    $ = 2x \cdot 3 + 15y \quad$ Wir fassen zunächst in der inneren Klammer zusammen und multiplizieren im nächsten Schritt.
    $ = 6x +15y $

    Dritte Aufgabe:
    $ 7x- [3 \cdot (5y - 15x) -3y]\quad$ Wir multiplizieren den Faktor $3$ mit der Klammer.
    $ = 7x - [15y - 45x -3y] $
    $ = 7x - [12y - 45x] \quad$ Wir fassen in der Klammer zusammen.
    $= 7x - 12y + 45x \quad$ Die Minusklammer dreht die Vorzeichen um.
    $ = 52x -12y$

    Vierte Aufgabe:
    $ 3y - [(5x+7x) - 15y] \quad$ Wir fassen in der inneren Klammer zusammen.
    $ = 3y - [12x - 15y]$
    $ = 3y - 12x +15y \quad$ Die Minusklammer dreht die Vorzeichen um.
    $ = -12x + 18y $

  • Tipps

    Wenn wir eine Klammer auflösen wollen, die einen Vorfaktor hat, muss dieser auf alle Elemente in der Klammer angewendet werden.

    Beispiel: gleichnamige Terme zusammenfassen:

    $7y - x + 5x + 19y = 7y + 19 y - x + 5x = 26y + 4x$

    Lösung

    Um diese Aufgabe zu lösen, benötigst du die folgenden Regeln zum Lösen von verschachtelten Klammern.

    • innerste Klammer zuerst
    • Punkt vor Strich
    • Vorfaktor vor Klammern wird beim Auflösen auf alle Summanden angewendet
    • Minuszeichen vor der Klammer dreht beim Auflösen alle Vorzeichen um
    Die erste Aufgabe wird wie folgt gelöst:

    $ [(3a -2a) - 4\cdot( 13 b - a ) + 5b] +a $

    Zuerst wird die innerste Klammer mit dem Vorfaktor $ - 4 $ aufgelöst. Dazu wird der Subtrahend und der Minuend mit $-4$ multipliziert. Da ein Minuszeichen vor der $4$ steht, werden die Vorzeichen dabei umgekehrt. Auch in der vorderen Klammer kann direkt $3a - 2a = a$ berechnet werden. Die äußere Klammer wird dann nicht mehr benötigt.

    $= a - 52b + 4a +5b + a $

    Abschließend werden alle Terme mit $a$ und alle Terme mit $b$ zusammengefasst und man erhält das Ergebnis:

    $ =6a - 47b $

    Die zweite Aufgabe wird wie folgt gelöst:

    $ (3a +2a) + 4\cdot 13 b - a - (5b + a ) $

    Zuerst wird der Term $ 4\cdot 13 b $ zusammengefasst und die hintere Klammer aufgelöst. Dazu werden die Vorzeichen in der Klammer umgekehrt. Auch in der vorderen Klammer kann direkt $3a + 2a = 5a$ berechnet werden.

    = $ 5a + 52b- a- 5b - a $

    Abschließend werden alle Terme mit $a$ und alle Terme mit $b$ zusammengefasst und man erhält das Ergebnis:

    = $ 3a + 47b $

  • Tipps

    Wenn in einem Term mehrere ineinander verschachtelte Klammern vorkommen, musst du sie von innen nach außen berechnen.

    Beispiel:

    $ 3 \cdot [ 5 \cdot \underbrace{( 4 + 7 )}_{\text{innere Klammer}} +5 ] - 15$

    Lösung

    Um den Term in der richtigen Reihenfolge zusammenzufassen, musst du dir überlegen, welche Klammern als erstes berechnet werden müssen. Es gilt die Regel, dass man mit der innersten Klammer anfängt und sich dann von innen nach außen durcharbeitet.

    Die Aufgabe hat folgende Reihenfolge:

    • $ 30 - 2 \cdot [ 3 \cdot (12 - 9 ) +5 ] $
    Wir beginnen mit der innersten Klammer:
    $\rightarrow$ Rechnung: $ 12 - 9 = 3$
    • $30 - 2 \cdot [ 3 \cdot \underbrace{(12 - 9)}_{3} +5 ] = 30 - 2 \cdot [ 3 \cdot 3 +5 ]$
    Wir berechnen die zweite Klammer und beachten dabei die Punkt-vor-Strich-Regel:
    $\rightarrow$ Rechnung: $ 3 \cdot 3 + 5 = 9 + 5 = 14$
    • $30 - 2 \cdot \underbrace{[3 \cdot 3 + 5]}_{14} = 30 - 2 \cdot 14 $
    Wir beachten bei der Berechnung des Terms die Punkt-vor-Strich-Regel und multiplizieren daher zuerst:
    $\rightarrow$ Rechnung: $ 2 \cdot 14 = 28$
    • $30 - \underbrace{2 \cdot 14}_{28} = 30 - 28$
    Zuletzt subtrahieren wir:
    • $30-28 = 2$
    Die Lösung des Terms lautet: $ 2 $

  • Tipps

    Achte auf Minusklammern: Wenn ein Minus vor der Klammer steht, drehen sich alle Vorzeichen in der Klammer um.

    Zum Beispiel:
    $ 2x - ( 4y - 5) = 2x - 4y + 5 $

    Beispiel:

    $ 3 [2x-3(y+x)] $
    = $ 3 [2x -3y - 3x] $
    = $ 3 [-x -3y] $
    = $ -3x -9y $

    Lösung

    Da es sich um Terme mit verschachtelten Klammern handelt, verwenden wir die folgenden Regeln:

    Wir beginnen mit der innersten Klammer.
    Ein Vorfaktor vor einer Klammer bezieht sich auf alle Summanden.
    Ein Minuszeichen vor der Klammer ändert die Vorzeichen in der Klammer.
    Wir beachten Punkt-vor-Strich-Rechnung.

    Die erste Aufgabe wird wie folgt gelöst:

    $ 5x - \{7 \cdot [3y - x - ( 2y -4x) ]\} $
    Die innerste Klammer kann nicht zusammengefasst werden, deshalb lösen wir gleich die Minusklammer auf.
    = $ 5x - \{ 7 \cdot [ 3y - x - 2y + 4x ]\}$
    Dann werden in der eckigen Klammer alle Terme mit $x$ und $y$ zusammengefasst.
    = $ 5x - \{ 7 \cdot [ y + 3x ]\} $
    Der Vorfaktor wird mit der Klammer verrechnet.
    = $ 5x - \{ 7y + 21x \} $
    Die Minusklammer wird aufgelöst.
    = $ 5x - 7y - 21x $
    Die beiden Terme mit $x$ werden zusammengefasst und wir erhalten das Ergebnis:
    = $ -16x - 7y $

    Die zweite Aufgabe wird wie folgt gelöst:

    $ [(13x \cdot 2 ) + 4x ] - (27x - 4 ) $
    Zuerst wird die innerste Klammer berechnet.
    = $ [26x + 4x] - (27x - 4 ) $
    Die erste Klammer kann nun weggelassen werden. Beim Auflösen der hinteren Minusklammer werden die Vorzeichen umgedreht.
    = $ 26x + 4x - 27x +4 $
    Anschließend werden die Terme mit $x$ zusammengefasst zu:
    = $ 3x + 4 $

    Die dritte Aufgabe wird wie folgt gelöst:

    $ 9y - \{[ - ( 14x : 2 ) \cdot 5 ] - 27y\} $
    Zuerst wird die innerste Klammer berechnet.
    = $ 9y - \{[ -7x \cdot 5 ] -27y\} $
    Dann wird der Ausdruck in der eckigen Klammer zusammengefasst.
    = $ 9y - \{-35x -27y\} $
    In der Minusklammer werden die Vorzeichen umgedreht.
    = $ 9y + 35x + 27y $
    Anschließend wird der Term zusammengefasst zu:
    = $ 36y + 35x $

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.225

Lernvideos

38.691

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden