Strahlensätze – Entfernungen im Gelände

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Strahlensätze – Entfernungen im Gelände
In diesem Video lernst du, wie du mit Hilfe des sogenannten "Daumensprungs" Entfernungen im Gelände bestimmen kannst. Zuerst erklären wir dir, wie der Daumensprung funktioniert und warum du dazu den Abstand deiner Augen und die Länge deines Armes kennen musst. Mit Hilfe des ersten Strahlensatzes kannst du mit diesen Angaben und der Daumensprung-Methode die Entfernung von Objeketen bestimmen. Du erfährst auch, warum der Daumensprung nur zum groben Schätzen von Entfernungen geeignet ist und welchen Einfluss ein Verschätzen beim Daumensprung auf die Genauigkeit deines Ergebnisses hat.
Transkript Strahlensätze – Entfernungen im Gelände
Hallo, heute beschäftigen wir uns mit Entfernungen im Gelände und wie man diese mit den Strahlensätzen berechnen kann. Hast du in diesem Zusammenhang schon etwas vom Daumensprung gehört? Dies ist eine Methode, wie man Entfernungen mithilfe seiner Daumen abschätzen kann. Klingt merkwürdig, aber es funktioniert. Ich erkläre dir nun erst einmal die Vorgehensweise beim Daumensprung.1. Strecke einen Arm ganz nach vorne aus und mache eine Faust. Stelle den Daumen auf. 2. Schließe dein rechtes Auge und peile mit dem linken Auge über den Daumen das Ziel an. 3. Schließe nun das linke Auge und öffne dein rechtes Auge. Der Daumen ist nun scheinbar zur Seite gesprungen.4. Schätze, wie weit der Daumen, bezogen auf das Ziel, gesprungen ist.Wie können nun aber mit dieser Methode Entfernungen im Gelände geschätzt werden? Mit den Strahlensätzen. Dazu brauchen wir allerdings ein paar Strecken- und Abstandsangaben. Die beiden Augen wechseln sich beim Sehen ab, also brauchen wir den Augenabstand. Du könntest ihn jetzt bestimmt bei dir messen. Die meisten Menschen haben einen Augenabstand von etwa 6cm. Zudem strecken wir den Arm nach vorne aus, also könntest du jetzt deine Armlänge messen. Bei 15-jährigen beträgt die Armlänge durchschnittlich 50cm. Schau dir nun mal die folgende Skizze an: Wie könnten wir jetzt die Entfernung zum Haus berechnen? Genau hier kommt unser erster Strahlensatz zum Einsatz. Schneiden zwei parallele Geraden die Schenkel eines Winkels, so gilt: Streckenlänge ZB'/Streckenlänge ZB = Streckenlänge ZA'/Streckenlänge ZA. Man kann dies auch etwas unmathematischer formulieren. Große Strecke/kleine Strecke = Große Strecke/kleine Strecke. Man muss dann nur die jeweils passenden Strecken zuordnen. Wir können also folgende Quotienten bilden: Armlänge/Augenabstand = Entfernung y des Gebäudes/geschätzte Daumensprungweite x. Oder kurz Arm/Auge = Entfernung y/Sprungweite x. Wenn wir jetzt eine geschätzte Daumensprungweite von 5m haben, so müssen wir folgende Rechnung durchführen: 50cm/6cm = y/5m. Nun müssen wir die Gleichung nach y umstellen und müssen daher die Gleichung mit 5m multiplizieren. Wir erhalten dann eine Entfernung von etwa 41,67m. Das Gebäude ist also etwa 40m von dir entfernt. Man kann sich die Sache auch etwas einfacher machen, wenn man sagt, dass die Armlänge etwa das Zehnfache vom Augenabstand beträgt. Dann braucht man unsere geschätzte Daumensprungweite nur noch mit 10 zu multiplizieren und erhält eine gute Abschätzung der gesuchten Entfernung. Beim Abschätzen der Entfernung hat eine Fehlerquelle einen besonderen Einfluss auf unser Ergebnis. Wenn man sich beim Daumenabstand um 1 Meter verschätzt, so wird der Fehler am Ende verzehnfacht. Sodass die geschätzte Entfernung um 10m zur korrekten Entfernung abweicht. So, ich hoffe, dass du einen ersten Eindruck zum ersten Strahlensatz gewonnen hast. Und jetzt kannst du raus an die frische Luft gehen, um mit dem Daumensprung Entfernungen abzuschätzen. Ich wünsche dir noch einen schönen Tag.
Strahlensätze – Entfernungen im Gelände Übung
-
Beschreibe, wie der Daumensprung durchgeführt wird.
TippsNehme deinen Daumen zu Hilfe und gehe die einzelnen Schritte durch.
Fällt dir dabei auf, dass dein Daumen gesprungen ist, wenn du das Ziel mit dem anderen Auge anpeilst?
LösungDer Daumensprung ist ein probates Mittel, um Strecken und Abstände abzuschätzen. Er ist dabei aber nur ein Bestandteil und du verwendest ihn stets in Verbindung mit dem 1. Strahlensatz. Hier wollen wir zunächst aber nur untersuchen, wie sich dieser Daumensprung durchführen lässt.
Zunächst gilt es, deinen Arm auszustrecken, eine Faust zu bilden und den Daumen aufzustellen. Diese Position muss jetzt für die nächsten Schritte gehalten werden, damit nicht schon durch Verwackeln des Armes Ungenauigkeiten entstehen. Nun schließt du ein Auge, zum Beispiel das rechte, und peilst mit dem geöffneten Auge dein Ziel an, sodass sich dein Daumen in einer Flucht mit dem angepeilten Gegenstand befindet. Nun wiederholst du diesen Vorgang, indem du mit dem anderen Auge dein Ziel anpeilst.
Wie du beim Ausprobieren vielleicht merkst, kommt es darauf an, welche Seite des entfernten Ziels du anpeilst. Mit ein bisschen Übung hast du aber sicherlich schnell den Dreh raus.
In jedem Fall fällt dir auf, dass dein Daumen gesprungen ist, nachdem du das Ziel mit dem anderen Auge angepeilt hast. Den Daumensprung schätzt du jetzt hinsichtlich des Ziels ab.
-
Ergänze den Weg zur Berechnung, wie weit Johnny vom Haus entfernt steht.
TippsÜberlege dir, welche Strecken zu den großen Strecken und welche zu den kleinen gezählt werden.
Wie kannst du die Gleichung nach der gesuchten Entfernung $y$ umstellen?
LösungJohnny möchte wissen, wie viele Meter er vom Haus entfernt steht. Er weiß, dass man mit dem Strahlensatz bestimmte Strecken zueinander in Beziehung setzen kann.
Bei unserer Aufgabe sind uns seine Armlänge sowie der Abstand seiner Augen bekannt. Mittels der Daumensprungmethode wird die Sprungweite $x$ des Daumens mit ungefähr $5~m$ abgeschätzt.
Nun stellt sich die Frage, wie man diese Strecken- und Abstandsangaben sinnvoll in Beziehung setzen kann, um am Ende die Entfernung y zu berechnen.
Da hilft uns der Strahlensatz weiter, den wir hier etwas vereinfacht benutzen können. Er lautet $\frac{\text{große Strecke}}{\text{kleine Strecke}} = \frac{\text{große Strecke}}{\text{kleine Strecke}}$.
Wichtig ist hierbei, dass wir von Anfang an wissen, was wir eigentlich berechnen wollen. Dann können wir die richtige Rechnung aufstellen, nämlich:
$\frac{\text{Armlänge}}{\text{Augenabstand}} = \frac{\text{Entfernung y}}{\text{Sprungweite x}}$
Setzen wir nun unsere Informationen in die Gleichung ein, ergibt sich $\frac{\text{50 cm}}{\text{6 cm}} = \frac{\text{y}}{\text{5 m}}$. Wir multiplizieren mit $5~m$, um nach $y$ aufzulösen und erhalten letztlich $y \approx 41,67~m$.
Da wir die Entfernung jedoch nur ungefähr abschätzen können, ist eine so präzise Angabe wie $41,67~m$ nicht unbedingt sinnvoll. Wir können einfach sagen, Johnnys Haus ist etwa $40$ Meter von ihm entfernt.
-
Bestimme die Strecke, in der Jimmy von den Bäumen entfernt steht.
TippsHalte dich an den Grundsatz $\frac{\text{große Strecke}}{\text{kleine Strecke}}$ = $\frac{\text{große Strecke}}{\text{kleine Strecke}}$.
Löse am Ende nach der gesuchten Strecke auf.
LösungDer Daumensprung ist manchmal eine nicht sehr genaue Methode zum Abschätzen von Strecken.
Diesmal kann Johnnys Bruder Jimmy allerdings das ideale Ergebnis des Daumensprungs mit dem 1. Strahlensatz berechnen, weil er weiß, in welcher Entfernung die beiden Bäume zueinander stehen. Diese Entfernung beträgt 12 Meter. Die gesuchte Strecke zwischen ihm und den Bäumen benennt er mit y.
Setzt er nun seine Informationen in die Gleichung ein, ergibt sich $\frac{\text{49 cm}}{\text{7 cm}}$ = $\frac{\text{y}}{\text{12 m}}$. Jetzt muss Jimmy nur noch nach y auflösen, indem er mit 12 m multipliziert.
Der Abstand zwischen ihm und den beiden Bäumen beträgt also y = 7 $\cdot$ 12 = 84 Meter.
-
Ermittle, wie weit du von Alia entfernt stehst.
TippsVerwende den 1. Strahlensatz, um die Lösung zu berechnen.
Löse nach der gesuchten Variablen auf.
LösungDas ist ein klassischer Falls, in dem du den 1. Strahlensatz verwenden kannst. Bedingung dafür ist allerdings, dass es zwei parallele Geraden gibt, die wie hier den Standort von Jule und Ahmed sowie von Hans und Alia verbinden.
Die Formel für die Berechnung lautet auch hier $\frac{\text{große Strecke}}{\text{kleine Strecke}}$ = $\frac{\text{große Strecke}}{\text{kleine Strecke}}$. Wir können die Entfernungen auch hier zueinander in Beziehung setzen, wobei der Name jeweils angibt, wie weit sie von dir entfernt stehen:
$\frac{\text{Jule}}{\text{Hans}}$ = $\frac{\text{Ahmed}}{\text{Alia}}$
Nun ist der größte Schritt getan. Wir müssen jetzt nur noch die jeweiligen Entfernungen in die Gleichung einsetzen. Dann können wir $\frac{60\text{m}}{45\text{m}}$ = $\frac{80\text{m}}{\text{Alia}}$ nach der Entfernung von Alia auflösen.
Alia steht 80 $\cdot \frac{45}{60}$ = 60 Meter von dir entfernt.
-
Benenne die richtigen Aussagen zum Daumensprung sowie zum 1. Strahlensatz.
TippsWie verhält sich deine Armlänge zum Abstand deiner Augen?
Gibt es Fehlerquellen beim Verwenden des Daumensprungs?
LösungDer Daumensprung ist eine Methode, um den Abstand eines in der Ferne liegenden Ziels einzuschätzen. Besitzt du keine modernen Hilfsgeräte, ist er allemal eine gute Alternative. Allerdings solltest du dir vor Augen führen, dass besonders große Entfernungen für Fehlerquellen sorgen, da bereits geringe Fehleinschätzungen andere Ergebnisse zur Folge haben.
Hatten wir für die Berechnung der Entfernung zum Haus bisher die Gleichung $\frac{50~cm}{6~cm}$ = $\frac{y}{5~m}$ aufgestellt und mit y $\approx$ 41,67 m gelöst, so ergibt sich ein ganz anderes Ergebnis, wenn wir die Sprungweite auf 7 Meter statt 5 Meter schätzen. $\frac{50~cm}{6~cm}$ = $\frac{y}{7~m}$ ergibt dann y $\approx$ 58,33 m. Das ergibt eine Differenz der Ergebnisse von fast 17 Metern. Es lassen sich mit dem Daumensprung also keine genauen Messungen durchführen, lediglich geschickte Abschätzungen sind möglich.
Als Faust- oder Daumenregel kannst du dir merken, dass die Armlänge ungefähr das Zehnfache des Augenabstands beträgt. Das spielt eine Rolle, wenn der Daumensprung in Zusammenhang mit dem 1. Strahlensatz verwendet wird.
Da der 1. Strahlensatz $\frac{\text{große Strecke}}{\text{kleine Strecke}}$ = $\frac{\text{große Strecke}}{\text{kleine Strecke}}$ lautet, kannst du bei Verwendung des Daumensprungs die linke Seite der Gleichung durch 10 ersetzen, da ja $\frac{\text{Armlänge}}{\text{Augenabstand}} \approx$ 10.
-
Bestimme, in welcher Distanz x der Ball von Marie entfernt liegt.
TippsBerücksichtige, dass du den 1. Strahlensatz kurz als $\frac{\text{große Strecke}}{\text{kleine Strecke}}$ = $\frac{\text{große Strecke}}{\text{kleine Strecke}}$ formulieren kannst.
Die Entfernung von Ball zu Mauer ist um 2 Meter kürzer als die Entfernung, in der Marie vom Ball steht.
Löse die Brüche auf, indem du mit den Nennern multiplizierst.
LösungAuch diese Aufgabe beinhaltet eine Variante des $1.$ Strahlensatzes. Wie du siehst, ist er vielfältig anwendbar.
Hier stehen die beiden Parallelen des Dreiecks in einem Verhältnis, so wie auch die Entfernung Maries zum Ball und die Teilstrecke zwischen Ball und Mauer in Verhältnis stehen.
In einer mathematischen Gleichung verpackt, könnte das so aussehen:
$\frac{\text{Augenhöhe Marie}}{\text{Höhe der Mauer}}$ = $\frac{\text{x}}{\text{Entfernung Ball zu Mauer}}$
Auf der linken Seite steht $\frac{\text{1,60 m}}{\text{1,20 m}}$ = $\frac{\text{4}}{\text{3}}$.
Die rechte Seite ist etwas schwieriger, da wir beide Angaben nicht haben. Allerdings wissen wir, dass Marie $2$ Meter von der Mauer entfernt steht. Das hilft uns weiter, wie wir gleich sehen werden. Dann können wir die rechte Seite nämlich durch $\frac{\text{x}}{\text{x - 2}}$ beschreiben.
Nun müssen wir nur noch ein bisschen rechnen:
$\frac{\text{4}}{\text{3}}$ = $\frac{\text{x}}{\text{x - 2}}$
Dazu multiplizieren wir mit $x - 2$ und erhalten $\frac{4}{3}\cdot x - \frac{8}{3} = x$ bzw. $\frac{1}{3}\cdot x = \frac{8}{3}$ und somit $x = 8$.
Die Entfernung zwischen Marie und Mauer beträgt $8$ Meter.
5.710
sofaheld-Level
6.572
vorgefertigte
Vokabeln
9.089
Lernvideos
38.999
Übungen
35.081
Arbeitsblätter
24h
Hilfe von Lehrer*
innen

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Primzahlen
- Geometrische Lagebeziehungen
- Rechteck
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was ist eine Viertelstunde
- Prisma
- Mitternachtsformel
- Grundrechenarten Begriffe
- Dreiecksarten
- Quader
- Satz des Pythagoras
- Dreieck Grundschule
- Erste binomische Formel
- Kreis
- Standardabweichung
- Flächeninhalt
- Volumen Kugel
- Zahlen in Worten schreiben
- Meter
- Orthogonalität
- Schriftlich multiplizieren
- Brüche multiplizieren
- Potenzgesetze
- Distributivgesetz
- Flächeninhalt Dreieck
- Rationale Zahlen
- Volumen berechnen
- Brüche addieren
- Kongruenz
- Exponentialfunktion
- Scheitelpunktform
- Logarithmus
- Erwartungswert
- Skalarprodukt
- Primfaktorzerlegung
- Quadratische Ergänzung
- Zinseszins
- Geradengleichung aus zwei Punkten bestimmen
- Sinusfunktion
Hallo Michael W.,
kannst du genauer sagen, was dir an diesem Video nicht gefallen hat? Wurde beispielsweise etwas deiner Ansicht nach nicht ausführlich genug erklärt? Wir freuen uns immer über Verbesserungsvorschläge.
Liebe Grüße aus der Redaktion
fand ich nicht so gut
mir fehlt hier die Bezeichnung/Nennung der Strecke Armlänge und Augenabstand im Schaubild. x und y sind benannt aber die Armlänge und der Augenabstand nicht eingezeichnet. Das macht die Erklärung nicht verständlich