Potenzgleichungen – Eigenschaften
Potenzgleichungen sind Gleichungen wie $x^{n}=a$. Der Exponent $n$ kann verschiedene Werte annehmen, und je nach Situation gibt es unterschiedliche Lösungen. Es ist notwendig, Äquivalenzumformungen vorzunehmen und die Regeln der Wurzeln anzuwenden. Mehr Beispiele und Details sind im Originaltext verfügbar. Magst du mehr darüber erfahren? Alle Informationen und vieles mehr stehen im kompletten Text!
- Potenzgleichungen und Potenzfunktionen mit natürlichen Exponenten
- Gerade positive Exponenten
- Ungerade positive Exponenten
- Zusammenfassung – Potenzgleichungen mit natürlichen Exponenten
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Potenzgleichungen – Eigenschaften Übung
-
Ergänze die Erklärung zu Potenzgleichungen.
TippsBei einer Potenzgleichung wird die Variable $x$ potenziert.
Eine Potenz hat die Form $a^n=b$. Dabei ist
- $a$ die Basis, welche mit
- $n$, dem Exponenten, potenziert wird.
- $b$ ist das Ergebnis der Potenz, der Potenzwert.
Eine Gleichung der Form
$x^2=4$
besitzt zwei Lösungen $x_1=-2$ sowie $x_2=2$.
Eine Gleichung der Form
$x^3=8$
besitzt eine Lösung $x=2$.
LösungWas ist eine Potenzgleichung?
Eine Potenzgleichung ist eine Gleichung der Form
$a\cdot x^n=b$.
Dabei sind
- $a,~b\in\mathbb{R}$,
- $n\in \mathbb{N}$ und
- $x$ unbekannt.
-
Gib die Lösungen der Potenzgleichungen an.
TippsBeachte, dass $3^2=(-3)^2=9$ ist.
Potenzgleichungen $x^n=b$ mit geradem Exponenten und positivem $b$ besitzen zwei Lösungen.
Falls ein Faktor vor der Potenz steht, musst du zunächst durch diesen teilen.
LösungBei der Lösung von Potenzgleichungen gibt es Unterschiede, je nachdem, ob der Exponent gerade oder ungerade ist:
gerade Exponenten
- $x^2=16$ wird durch Ziehen der Quadratwurzel gelöst und man erhält $x_1=4$ sowie $x_2=-4$.
- Wenn die rechte Seite negativ ist, ist die Gleichung nicht lösbar, wie zum Beispiel bei $x^4=-16$.
- $5x^2=125$. Durch Division durch $5$ erhält man $x^2=25$. Auch hier wird die Quadratwurzel gezogen und die Lösungen sind $x_1=5$ und $x_2=-5$.
- $x^3=27$. Durch Ziehen der dritten Wurzel erhält man $x=3$.
- $3x^3=0,375$ ist nach Division durch $3$ äquivalent zu $x^3=0,125$. Die dritte Wurzel liefert $x=0,5$.
- Bei Potenzgleichungen mit ungeradem Exponenten sind auch Gleichungen mit negativer rechter Seite lösbar: $2x^3=-16$ ist äquivalent zu $x^3=-8$. Nun kann die dritte Wurzel gezogen werden und man erhält als Lösung $x=-2$.
-
Ermittle die Lösung der Potenzgleichung.
TippsDie Umkehrung einer Potenz mit dem Exponenten $n$ ist das Ziehen der $n$-ten Wurzel.
Bei ungeraden Exponenten gibt es immer eine Lösung.
Die Lösung von $x^5=32$ ist $2$, da $2^5=32$ ist.
LösungUm die Gleichung
$4x^3=500$
zu lösen, muss man zunächst durch $4$ dividieren:
$x^3=125$.
Nun kann die dritte Wurzel gezogen werden und man erhält die Lösung
$x=5$, da $5^3=125$ ist.
-
Überprüfe die Gleichungen auf ihre Lösbarkeit.
TippsDer Graph der Funktion $f(x)=x^2$ ist eine Normalparabel. Diese ist achsensymmetrisch zur y-Achse.
Jede Potenzfunktion mit geradem Exponenten ist achsensymmetrisch zur y-Achse.
Beim Ziehen einer Wurzel mit geradem Wurzelexponenten erhältst du mit dem Taschenrechner eine Lösung. Das Negative dieser Lösung liefert beim Potenzieren das gleiche Ergebnis.
Zum Beispiel ist $\sqrt[4]{16}=2$ und es gilt $2^4=(-2)^4=16$.
Potenzgleichungen $x^n=b$ mit geradem Exponenten sind nur lösbar, wenn $b\ge0$ ist.
Beachte, dass du gegebenenfalls durch einen Faktor vor der Potenz teilen musst.
LösungEs gilt, dass Potenzgleichungen $x^n=b$
- bei ungeradem Exponenten immer lösbar sind und
- bei geradem Exponenten nur, wenn $b\ge 0$ ist. Für $b>0$ gibt es zwei Lösungen und für $b=0$ nur eine, $x=0$.
$\begin{align*} -3x^2&=-0,75&|&:(-3)\\ x^2&=0,25&|&\sqrt{~}\\ x_1&=0,5\\ x_2&=-0,5. \end{align*}$
Die Gleichung $-2x^4=32$ ist nicht lösbar, da man nach der Division durch $-2$ den Term $x^4=-16$ erhält. Da eine Potenz mit geradem Exponenten keine negativen Potenzwerte haben kann, kann $x^4=-16$ keine Lösung besitzen.
Die Gleichung $7x^5=224$ kann man durch Dividieren durch $7$ umformen zu $x^5=32$. Nun kann man die fünfte Wurzel ziehen und erhält $x=2$. Hier ist $-2$ keine Lösung, da $(-2)^5=-32$ ist.
-
Fasse die Eigenschaften von Potenzfunktionen zusammen.
TippsBeachte, dass zum Beispiel $2^2=(-2)^2=4$.
Zeichne dir die Graphen der beiden Funktionen in ein Koordinatensystem.
Die Definition einer Funktion setzt voraus, dass zu jedem x-Wert höchstens ein y-Wert gehört. Ist dies bei einer Symmetrie zur x-Achse möglich?
LösungZu $f(x)=x^2$:
- Der Graph dieser Funktion ist die Normalparabel, diese ist im Bild oben zu sehen.
- Diese ist symmetrisch zur y-Achse.
- Für jeden y-Wert, welcher größer als $0$ ist, gibt es zwei x-Werte mit diesem Funktionswert, da zum Beispiel $(-2)^2=2^2=4$ ist.
- Die Funktion besitzt ein Extremum. Dies ist ein Tiefpunkt.
- Links von dem Tiefpunkt fällt und rechts davon steigt die Funktion.
- $f(x)=x^2$ besitzt keine negativen Funktionswerte. Das bedeutet, dass die Gleichung $x^2=b$ mit negativem $b$ nicht lösbar ist.
- Der Graph dieser Funktion ist hier im Bild zu sehen.
- Er ist symmetrisch zum Koordinatenursprung.
- Für jeden y-Wert gibt es einen x-Wert mit diesem Funktionswert.
- Die Funktion ist monoton steigend.
- Daraus folgt, dass jede Gleichung der Form $x^3=b$ für beliebiges $b$ genau eine Lösung besitzt.
-
Arbeite die Lösung der Potenzgleichung heraus.
TippsDie Potenz ist gerade. Das heißt, dass es zwei Lösungen gibt.
Forme die Gleichung zunächst so um, dass die Potenzen mit der Basis $x$ alle auf der linken Seite und die gegebenen Zahlen auf der rechten Seite stehen, oder umgekehrt.
So gelangst du zu der Gleichung
$100x^2=49$.
Nun musst du noch durch $100$ dividieren und dann die Quadratwurzel ziehen.
LösungDie Gleichung $65-53x^2=16+47x^2$ sieht schon etwas komplexer aus. Es handelt sich auch hier um eine Potenzgleichung, da $x$ jedes Mal in Form einer Potenz vorkommt. Da der Exponent gerade ist, hat diese Gleichung auch zwei Lösungen. Zunächst formt man die Gleichung so um, dass man eine Gleichung der Form $x^2=b$ hat:
$\begin{align*} 65-53x^2&=16+47x^2&|&-16\\ 49-53x^2&=47x^2&|&+53x^2\\ 49&=100x^2&|&:100\\ 0,49&=x^2. \end{align*}$
Nun kann die Quadratwurzel gezogen werden und man erhält die beiden Lösungen $x_1=0,7$ sowie $x_2=-0,7$.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt