30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Lineare Gleichungen aufstellen und lösen 05:30 min

Textversion des Videos

Transkript Lineare Gleichungen aufstellen und lösen

Während er an einem Fall arbeitet, bekommt Privatdetektiv Irving eine anonyme Nachricht per Fax? Was ist das? Sieht aus wie ein Stadtplan und einige Orte sind markiert. Die Nachricht besagt, dass Irving den rechten Treffpunkt herausfinden kann, indem er die Winkelgrößen von Dreiecken berechnet. Helfen wir Irving dabei, indem wir mit ihm lineare Gleichungen aufstellen und lösen. Als Erstes übersetzen wir die Hinweise in mathematische Ausdrücke. Für jedes der Dreiecke gibt es drei Hinweise, mit denen man seine Winkel berechnen kann. Der erste Hinweis besagt, dass die Winkel des ersten Dreiecks alle gleich groß sind. Es handelt sich also um ein gleichseitiges Dreieck. Da die drei Winkel α, β und γ alle gleich groß sind, können wir die Winkelgrößen alle mit der Variablen x bezeichnen. Die Summe der Winkel eines Dreiecks ist immer 180 °. Wenn wir drei gleiche, unbekannte Werte addieren, können wir das als lineare Gleichung schreiben: 3x ist gleich 180 °. Wir lösen nach x auf, indem wir beide Seiten der Gleichung durch 3 teilen und erhalten so: x ist gleich 60 °. Jeder Winkel des Dreiecks ist also genau 60 ° groß. Da alle Winkel in diesem Dreieck gleich groß sind und Irving nicht an drei Orten zugleich sein kann, verrät ihm dieser Hinweis offenbar nicht den rechten Treffpunkt. Er kann dieses Dreieck also schon mal streichen. Schauen wir uns die Hinweise für das nächste Dreieck an. α ist unbekannt, wir nutzen wieder die Variable x. β ist 3 mal x + 3 ein Drittel Grad groß. Und γ ist doppelt so groß wie β. Auch wenn diese Aufgabe gemischte Brüche enthält, können wir sie genau so wie die erste lösen, indem wir eine lineare Gleichung aufstellen. Jetzt müssen wir einfach nur Schritt für Schritt vorgehen. Als Erstes addieren wir die Ausdrücke, die für die drei unbekannten Winkel stehen. Dann setzen wir den Term gleich 180 °, der Summe der Innenwinkel eines Dreiecks. Jetzt haben wir die lineare Gleichung. Um nach x aufzulösen, lösen wir zuerst die Klammer mit dem Distributivgesetz auf. Dann fassen wir gleichartige Terme zusammen und isolieren x mithilfe einer Äquivalenzumformung. In diesem Fall subtrahieren wir 10 Grad auf beiden Seiten der Gleichung. Dann teilen wir beide Seiten der Gleichung durch 10, um nach x aufzulösen. So erhalten wir x = 17 °. Diesen Wert können wir jetzt einsetzen, um α, β und γ zu berechnen. α ist natürlich 17 °. Setzen wir 17 ° in die zweite Gleichung für x ein, erhalten wir 3 mal 17 ° plus 3 ein Drittel Grad. 3 mal 17 ° ergibt 51 °. Wenn wir 3 ein Drittel Grad addieren, erhalten wir als Ergebnis 54 ein Drittel Grad. Die Gleichung für γ sieht kompliziert aus, den Term in der Klammer haben wir aber schon gelöst. Das Ergebnis war: 54 ein Drittel Grad. Dieses Ergebnis müssen wir also nur mal 2 nehmen, um die Lösung zu erhalten: 108 zwei Drittel Grad. Keiner diese Punkte kann der rechte Treffpunkt sein. Außerdem liegen alle Eckpunkte im Wasser. Das hätte ihm auch vorher auffallen können. Hm, wir haben noch ein Dreieck übrig. β ist doppelt so groß wie α. Wir nutzen für α die Variable x und dementsprechend für β 2 mal x. γ ist dreimal so groß wie α. Das entspricht dann also 3x. Wieder stellen wir eine lineare Gleichung auf, indem wir die drei unbekannten Winkel addiert. Um nach x aufzulösen, fassen wir die gleichartigen Terme zusammen, x plus 2x plus 3x, ergibt 6x. Als Nächstes teilen wir beide Seiten durch 6, um x zu isolieren. Wir erhalten x ist gleich 30 °. Finden wir nun die Werte für die drei Winkel. α ist gleich x also gleich 30 °. β ist gleich 60 °. Und γ ist gleich 90 °. 90 °!? Das ist ja ein rechter Winkel. Die Hinweise haben Irving gezeigt, dass das Dreieck ein 30-60-90-Dreieck sein muss. Das muss es sein. Der rechte Treffpunkt. Irving springt in sein Auto und fährt zur Ecke mit dem rechten Winkel. Was ist das denn? Das war nur ein Plan, um ihn zu einer Überraschungsparty zu locken? Alles Gute zum Geburtstag, Irving!

1 Kommentar
  1. Richtig cooles Video mit diesem Detektiv. Mache bitte mehr mit dem Detektiv

    Von Aliabadi1962, vor etwa einem Monat

Lineare Gleichungen aufstellen und lösen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Lineare Gleichungen aufstellen und lösen kannst du es wiederholen und üben.

  • Beschreibe das Vorgehen beim Aufstellen und Lösen von linearen Gleichungen.

    Tipps

    Um Probleme mit linearen Gleichungen zu lösen, musst du deine Informationen zuerst mathematisch ausdrücken.

    Hast du eine Variable ausgerechnet, kannst du damit alle anderen Variablen, die von dieser abhängig sind, berechnen.

    Lösung

    So kannst du hier vorgehen:

    „Schreibe die gegebenen Informationen in mathematische Ausdrücke mit verschiedenen Variablen um.“

    • Um Probleme mit linearen Gleichungen zu lösen, musst du deine Informationen zuerst mathematisch ausdrücken.
    „Fasse deine mathematischen Ausdrücke mit verschiedenen Variablen so zusammen, dass überall nur noch eine Variable vorkommt.“

    • Die Rechnung vereinfacht sich sehr, wenn nur eine Variable darin vorkommt.
    „Setze deine mathematischen Ausdrücke, in denen nur noch eine Variable vorkommt, zu einer Gleichung zusammen.“

    „Vereinfache die Gleichung und löse sie nach deiner Variablen auf.“

    „Berechne mit dieser Variablen alle anderen Variablen.“

    • Hast du eine Variable ausgerechnet, kannst du damit alle anderen Variablen, die von dieser abhängig sind, berechnen.
  • Bestimme die korrekten Aussagen zum Aufstellen und Lösen von linearen Gleichungen.

    Tipps

    Die drei Winkel eines Dreiecks addieren sich zu $180^{\circ}$.

    Wenn $\beta$ doppelt so groß ist wie $\alpha$, dann ergeben zwei $\alpha$ ein $\beta$.

    Lösung

    Diese Aussage ist falsch:

    „Wenn alle Winkel eine Dreiecks gleich groß sind, können wir die Gleichung

    $4x=180^{\circ}$

    aufstellen.“

    • Die drei Winkel eines Dreiecks addieren sich zu $180^{\circ}$. Also lautet die Gleichung: $3x=180^{\circ}$.
    Diese Aussagen sind richtig:

    „Wenn $\beta$ doppelt so groß ist wie $\alpha$ und $\alpha=x$, dann gilt:

    $\beta= 2x$.“

    • Zwei $\alpha$ ergeben ein $\beta$. In der Gleichung wurde $\alpha$ durch $x$ ausgedrückt.
    „Um die Winkel zu bestimmen, können wir einen Winkel mit $x$ bezeichnen und alle anderen Winkel durch diese Variable ausdrücken.“

    • Das ist ein gutes Vorgehen, um hier die linearen Gleichungen zu lösen.
    „Wenn gilt: $2\beta= \gamma$ und $\beta=54 \frac{1}{3}^{\circ} $, dann ist $\gamma=108 \frac{2}{3}^{\circ} $.“

    • Setzt du hier den Wert für $\beta$ in die Gleichung ein, erhältst du diesen Wert für $\gamma$.
  • Stelle eine lineare Gleichung auf und löse sie.

    Tipps

    Schreibe zuerst die gegebenen Informationen in mathematische Ausdrücke mit Variablen um und fasse diese anschließend so zusammen, dass nur noch eine Variable in ihnen vorkommt.

    Alle Dreiecke haben eine Winkelsumme von $180^{\circ}$. Das kannst du beim Aufstellen deiner Gleichung verwenden.

    Lösung

    So kannst du den Lückentext vervollständigen:

    • Schreibe zuerst die gegebenen Informationen in mathematische Ausdrücke mit Variablen um.
    „Wir wissen, dass $\beta$ doppelt so groß wie $\alpha$ ist. Also gilt:

    $\beta = 2\alpha$.

    Außerdem ist $\gamma$ dreimal so groß wie $\alpha$. Das können wir so ausdrücken:

    $\gamma = 3\alpha$.“

    • Fasse anschließend deine mathematischen Ausdrücke so zusammen, dass nur noch eine Variable vorkommt.
    „Bezeichnen wir den Winkel $\alpha$ mit der Variablen $x$

    $\alpha = x$,

    erhalten wir für die anderen Winkel:

    $\beta = 2x$ und

    $\gamma = 3x$.“

    • Alle Dreiecke haben eine Winkelsumme $180^{\circ}$. Mit diesen Informationen kannst du eine Gleichung aufstellen.
    „Das können wir zu einer Gleichung zusammenfassen:

    $x+ 2x+ 3x=180^{\circ}$.“

    • Die Gleichung kannst du nach der Variablen auflösen.
    „Vereinfacht ergibt das:

    $6x=180^{\circ}$.

    Damit erhalten wir

    $x=30^{\circ}$.“

    • Als letzten Schritt kannst du mit deiner ausgerechneten Variablen alle anderen Variablen, die von dieser abhängig sind, berechnen.
    „Setzen wir das in die Gleichungen für die anderen Winkel ein, erhalten wir:

    $\beta =60^{\circ}$ und

    $\gamma=90^{\circ}$.

    Hier liegt also der rechte Winkel.“

  • Bestimme das Ergebnis mit Hilfe einer linearen Gleichung.

    Tipps

    Zuerst musst du die Informationen in mathematische Ausdrücke umschreiben:

    $a$ ist doppelt so lang wie $b$, also:

    $a =2b$

    $c$ ist dreimal so lang wie $d$, also:

    $c=3d$

    Die Fläche des linken Rechtecks kannst du so schreiben.

    $A_1=a \cdot b= 2b \cdot b$

    So sieht die fertige Gleichung aus:

    $2b \cdot b + 3b \cdot b = 10 b$

    Lösung

    So kannst die Maße des Zimmers bestimmen:

    Zur Übersichtlichkeit lassen wir die Einheiten in der Gleichung weg. Zuerst schreiben wir die Informationen in mathematische Ausdrücke um:

    $a$ ist doppelt so lang wie $b$, also:

    $a =2b$.

    $c$ ist dreimal so lang wie $d$, also:

    $c=3d$.

    Da außerdem $b=d$ gilt, erhalten wir:

    $c=3b$.

    Die Fläche des linken Rechtecks können wir schreiben durch:

    $A_1=a \cdot b= 2b \cdot b$

    Die rechte Fläche können wir schreiben als:

    $A_2=c \cdot d= 3d \cdot d= 3b \cdot b $.

    Damit können wir die Gleichung aufstellen und lösen:

    $\begin{array}{rlll} A_1+A_2 &=& 10 b\\ 2b \cdot b + 3b \cdot b &=& 10 b\\ 5b \cdot b &=& 10 b &\vert : b\\ 5b &=& 10 &\vert : 5\\ b &=& 2\\ \end{array}$

    Die anderen Größen können wir durch Einsetzen bestimmen:

    $a=2b= 4~\text{m}$

    $c=3b= 6~\text{m}$

    $A=10 \cdot b~\text{m} = 20~\text{m}^2$

  • Ermittle, wie du die Informationen mathematisch ausdrücken kannst.

    Tipps

    Um die Gleichungen zuzuordnen, nimm die kleinste Größe als Variable $x$ an. Dann versuche alle anderen Mengen durch diese Variable auszudrücken.

    Oft kannst du deine mathematischen Ausdrücke zu einer Gesamtmenge addieren.

    Lösung

    Um die Gleichungen zuzuordnen, nimm die kleinste Größe als Variable $x$ an. Dann versuche alle anderen Mengen durch diese Variable auszudrücken. Oft kannst du diese Variablen zu einer Gesamtmenge addieren.

    „In Annas Wasserflasche passt doppelt so viel wie in Luis' Flasche. Zusammen haben die beiden Flaschen ein Volumen von $2$ Liter.“

    • $ 2x + x=2$
    Hier beschreibt $x$ den Inhalt von Luis' Flasche. Da Annas Flasche doppelt so groß ist, bezeichnet $2x$ den Inhalt ihrer Flasche. Die Summe dieser beiden Inhalte muss $2$ sein.

    „Maria und Phil bezahlen $22~€$ für ihr Mittagessen. Marias Pizza kostet drei Mal so viel wie Phils vegetarischer Döner. Sie geben $2~€$ Trinkgeld.“

    • $3x +x+2 =22$
    Hier beschreibt $x$ den vegetarischen Döner. Die Pizza ist dreimal so teuer, also $3x$. Zusammen mit den zwei Euro Trinkgeld muss das 22 ergeben.

    „Sarah fährt von New York nach Asheville. Nach der Hälfte macht sie eine Pause von einer Stunde. Insgesamt ist sie $11$ Stunden unterwegs.“

    • $x + 1=11$
    Hier bezeichnet $x$ die Zeit im Auto, $1$ die Dauer der Pause und $11$ die gesamte Reisedauer.

    „Chris backt einen Kuchen. Darin kommt doppelt so viel Margarine wie Zucker und viermal so viel Mehl wie Zucker. Insgesamt wiegt der Teig zwei Kilo.“

    • $x+2x+4x=2$
  • Ermittle die Lösung der Gleichungen.

    Tipps

    Die Lösungen kannst du bestimmen, indem du die Gleichungen vereinfachst und anschließend auflöst. Fasse gleichartige Terme immer zuerst zusammen.

    Eine der Rechnungen beginnt so:

    $\begin{array}{rlll} 3x +x+2 &=&22 \\ 4x+2 &=&22 &\vert-2 \\ \end{array}$

    Lösung

    Die Lösungen kannst du bestimmen, indem du die Gleichungen vereinfachst und anschließend auflöst. So erhältst du:

    $\begin{array}{rlll} 3x +x+2 &=&22 \\ 4x+2 &=&22 &\vert-2 \\ 4x&=&20 &\vert :4 \\ x &=&5\\ \end{array}$

    Oder:

    $\begin{array}{rlll} x+2x+4x-6&=&1\\ 7x-6 &=&1 &\vert+6 \\ 7x&=&7 &\vert :7 \\ x &=&1\\ \end{array}$

    Die anderen Gleichungen kannst du ähnlich lösen. Hier müssen jedoch zunächst die Klammern aufgelöst werden. Dann erhältst du:

    • $12(x-3) -9x=12~\Rightarrow~x=16$
    $\begin{array}{rlll} 12(x-3) -9x&=&12 & ~\\ 12x - 36 - 9x &=& 12 & \vert +36 \\ 3x &=& 48 &\vert :3 \\ x &=& 16 &~\\ \end{array}$

    • $5(x+2)+ x(1+4)=0~\Rightarrow~x=-1$