Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Kegel: Volumen und Oberfläche – Übungen

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bereit für eine echte Prüfung?

Das Volumen Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Bewertung

Ø 3.7 / 27 Bewertungen
Die Autor*innen
Avatar
Mathe-Team
Kegel: Volumen und Oberfläche – Übungen
lernst du in der 7. Klasse - 8. Klasse - 9. Klasse - 10. Klasse

Grundlagen zum Thema Kegel: Volumen und Oberfläche – Übungen

Nicht jede Person ist dazu fähig, das Volumen eines Kegels zu berechnen. Das muss auch der Zementwerksleiter in diesem Video einsehen. Wir kommen ihm deshalb zur Hilfe und werden für ihn die notwendigen Berechnungen durchführen. Dabei werde ich dir alles Grundlegende zur Volumenberechnung von Kegeln erklären. Im Video werden wir uns zuerst das Problem des Zementwerkleiters anhören, dann werde ich dir die Formel zur Berechnung des Kegelvolumens vorstellen und mit dir gemeinsam Rechnungen dazu durchführen. Viel Spaß dabei!

Transkript Kegel: Volumen und Oberfläche – Übungen

Hallo. In diesem Video geht es um die Volumenberechnung eines Kegels. Und zwar um einen Kegel, wie er im Alltag öfter auftritt: Einen Sandhaufen. Im Alltag begegnen wir oft geometrischen Körpern. Quader dürften die Ranglisten anführen. Man denke nur an Häuser, Schachteln, Pakete, Kisten und so weiter. Kegel sind seltener, aber auch vorhanden. Schultüten, Eiswaffeln, alte Turmdächer, Sektgläser, Bojen. Alles Körper, mit Kegelform. Und eben Sandhaufen, um die es in diesem Video geht. Wir werden zunächst das Problem skizzieren, bei dem der Sandhaufen eine Rolle spielt. Dann werden wir die Formel zur Volumenberechnung eines Kegels wiederholen, um sie schließlich auf unsere Aufgabe anzuwenden. In diesem Video geht es um Sandhaufen, wie sie zum Beispiel in einem Zementwerk mittels Förderbändern aufgeschüttet werden, denn Sand ist eine der Zementzutaten. Eigentlich sollte man von Sandbergen sprechen, so hoch wie die sind. Damit der Leiter des Zementwerks immer weiß, ob sein Sandvorrat groß genug ist, muss er irgendwie das Volumen der Sandberge berechnen. Nur wie? Hier hilft ihm die Geometrie. Denn solche Sandberge haben in etwa die Form eines Kreiskegels. Es gibt keine perfekten, geometrischen Körper in der Natur, aber der Kreiskegel ist eine gute Näherung. Mit der Formel zur Berechnung des Volumens eines Kreiskegels, kann der Leiter des Zementwerks also seinen Sandvorrat berechnen. Wir helfen ihm heute dabei. Das ist unsere erste Aufgabe, denn wir sollen ihm auch bei einem weiteren Problem helfen. Für einen Auftrag braucht er eine bestimmte Menge an Sand. Dieser wird von einem Bagger dem Berg entnommen, und zwar von der Spitze weg. Wir sollen für ihn herausfinden, wie tief er baggern darf, um nicht zu viel Sand abzutragen. Wenn wir hier in diesem Video vom Kegel sprechen, dann meinen wir den geraden Kreiskegel, dessen Grundfläche ein Kreis ist und dessen Achse senkrecht dazu steht. Wir wissen, dass das Volumen eines Kegels nur von der Höhe und der Grundfläche abhängt. V = ⅓ * G * h. Der Flächeninhalt ist wiederum durch den Durchmesser oder den Radius festgelegt. G = π * r². Unsere Formel lautet daher V = ⅓ * π * r² * h. Jetzt können wir die Aufgabe berechnen. Gegeben ist also ein kegelförmiger Sandhaufen. Der Leiter des Zementwerks konnte folgende Werte messen: Den Durchmesser des Sandbergs mit 14 Meter und dessen Höhe mit sechs Meter. Damit ist das Volumen V = ⅓ * π * (7 m)² * 6 m, da der Radius ja der halbe Durchmesser ist. Ausquadriert erhalten wir V = ⅓ * π * 49 m² * 6 m = 1/3 * π * 294 m³. Und das sind gerundet 308 m³. Genauer müssen wir es nicht wissen. Der Sandhaufen enthält also 308 m³ Sand. Damit wäre dem Leiter des Zementwerks schon einmal geholfen. Er weiß jetzt, wie groß sein Sandvorrat ist. Nun soll der Bagger 30 m³ von der Spitze wegbaggern, sodass ein Kegelstumpf übrig bleibt. Wie tief darf er baggern, um nicht zu viel oder auch zu wenig abzutragen? Gesucht ist also jetzt die Höhe hB des weggebaggerten Kegels, mit dem Volumen VB = 30 m³. Wir stellen deshalb die Volumenformel VB = ⅓ * π * rB² * hB, nach dieser Höhe um, indem wir beide Seiten der Gleichung durch 1/3 * π * rB² teilen wir erhalten hB = (3 * VB) / (π * rB²), wobei rB der Radius des weggebaggerten Kegels ist. Doch wie groß ist rB? Betrachten wir den Kegel von der Seite, dann ist, wegen des zweiten Strahlensatzes, das Verhältnis aus r und h gleich dem Verhältnis aus rB und hB. Wir erhalten die Gleichung rB / hB = r / h. Also ist der Radius des Kreiskegels, der weggebaggert werden soll rB = (hB * r) / h. Das setzen wir jetzt in die Formel für rB ein und erhalten hB = (3 * VB) / (π * ((hB * r) / h)²) = (3 * VB) / (π * ((hB² * r) / h)). Indem wir den Bruch mit h² erweitern, vereinfachen wir die Formel zu hB = (3 * VB * h²) / (π * hB² * r²). Jetzt bringen wir noch hB auf eine Seite, indem wir mit hB² multiplizieren. hB³ = (3 * VB * h²) / (π * r²). Bevor wir die dritte Wurzel ziehen, setzen wir die Zahlen ein. hB³ = (3 * 30 m³ * 36 m²) / (π * 49 m²) = 3240 m5 / π * 49 m² = 21,05 m³. Nun noch die dritte Wurzel gezogen und wir erhalten hB = 2,76 m, also etwa 2,80m. Genauer kann der Bagger sicher nicht baggern. Wir fassen die Lösung der Aufgabe nochmal zusammen: A, das Volumen des gesamten Sandberges beträgt rund 308 m³. B, will der Bagger 30 m³ entnehmen, muss er etwa 2,80m von der Spitze wegbaggern. Damit haben wir beide Probleme des Zementwerkleiters lösen können und ihm das richtige Werkzeug zur Hand gegeben, um beim nächsten Mal selbst diese Berechnungen durchzuführen.

11 Kommentare
  1. Ok

    Von Colin, vor etwa 2 Jahren
  2. @Gebrekidanketema: Bitte beschreibe genauer, was du nicht verstanden hast. Gib beispielsweise die konkrete Stelle im Video mit Minuten und Sekunden an. Ich hoffe, dass wir dir weiterhelfen können.

    Von Thomas Scholz, vor etwa 8 Jahren
  3. ich check das nicht

    Von Gebrekidanketema, vor etwa 8 Jahren
  4. @Bschmidtjaeger: Was ist in deiner Aufgabe der Winkel alpha? Ist es der eingeschlossene Winkel zwischen dem Radius r und der Seitenlinie s? Wenn ja, dann ist eine Brechnung nicht möglich, da der Winkelsummensatz besagt, dass die Summe der Innenwinkel eines Dreiecks 180° beträgt. Der Winkle zwischen der Höhe h und dem Radius r beträgt 90° (rechter Winkel). 90°+100°=190°.
    Also kann es kein rechtwinkliges Dreieck sein und somit kein gerader Kegel.
    Solltest du noch Fragen haben, kannst du dich gerne an der Hausaufgaben-Chat wenden, der von Montag bis Freitag zwischen 17 und 19 Uhr für dich da ist.

    Von Thomas Scholz, vor mehr als 8 Jahren
  5. wie müsste ich rechnen wenn
    s=15cm und alpha=100grad

    Von Bschmidtjaeger, vor mehr als 8 Jahren
Mehr Kommentare

Kegel: Volumen und Oberfläche – Übungen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kegel: Volumen und Oberfläche – Übungen kannst du es wiederholen und üben.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.280

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.180

Lernvideos

38.662

Übungen

33.472

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden