30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Berechnungen am Kegelstumpf 05:20 min

Textversion des Videos

Transkript Berechnungen am Kegelstumpf

Hallo und herzlich willkommen. meine Name ist Jonathan und ich nehme dich heute mit in die wunderbare Welt der Mathematik. In diesem Video möchte ich mit Dir üben, das Volumen und die Oberfläche eines Kegelstumpfes zu berechnen. Ich werde erst einmal eine Übersicht mit den Formeln für die Oberfläche, das Volumen und die Mantellinie erstellen, damit wir sie dann parat haben. Wir werden dann zusammen an einem Beispiel die Oberfläche und das Volumen eines Kegelstumpfes berechnen. Am Ende werde ich zusammenfassen, wie Du bei den Berechnungen am Kegel vorgehen musst. Du solltest den Kegelstumpf schon kennen. Auch die Formeln, die wir benutzten, solltest Du kennen, da ich sie Dir in diesem Video nicht herleite.Fangen wir mit der Formelsammlung an. Der Radius der Grundfläche heißt groß R. Der Radius der Deckfläche klein r. Die Höhe des Kegelstumpfes ist h und die Mantellinie heißt m. Die Formel für die Mantelfläche lautete: AM = π * m * (R + r). Die gesamte Oberfläche setzt sich aus der Mantelfläche, der Deckfläche und der Grundfläche zusammen. Die Formel lautet dann: AO = π (r² + R² + m(R + r))Wenn du R, r und h kennst, kannst Du die Länge der Mantellinie ausrechnen. m = Wurzel(h² + (R - r)²) Für das Volumen gilt: V = π/3 * h * (R² + Rr + r²). Jetzt schauen wir uns einen Kegelstumpf an. Wir wollen Oberfläche und Volumen von diesem Kegelstumpf berechnen. Die Grundfläche hat einen Radius von 10 Zentimetern. Die Deckfläche hat einen Radius von 4 Zentimetern. Die Höhe beträgt 8 Zentimeter. Die Länge der Mantellinie habe ich schon gemessen. Sie ist 10 Zentimeter lang. Das m wirklich 10 Zentimeter ist, kannst Du mit der Formel nachrechnen. Mit diesen Werten können wir die Größe der Oberfläche berechnen. Wir setzen die Werte für R, r und m ein. Wir rechnen die Quadrate aus und 10cm + 4cm = 14cm. 10cm * 14cm = 140cm². 16cm² + 100cm² + 140cm² sind zusammen 256cm². Nun kannst du π * 256cm² mit dem Taschenrechner rechnen und dann haben wir das Ergebnis. Unser Kegelstumpf hat eine Oberfläche von rund 804cm².Jetzt können wir das Volumen von dem Kegelstumpf ausrechnen. Wir setzen die Werte für R, r und h ein. (10cm)² = 100cm². 10cm * 4cm = 40cm². (4cm)² = 16cm². Das zusammengerechnet ergibt 156cm². π/3 * 8 * 156 kannst Du in den Taschenrechner eingeben. Das Ergebnis ist rund 1307. Das Volumen ist also 1307cm³.Ich fasse kurz zusammen: Um die Oberfläche eines Kegelstumpfes auszurechnen, brauchst Du die Radien der Grundfläche und der Deckfläche. Also R und r und die Länge der Mantellinie m. Wenn Du m nicht durch Messen herausfinden kannst, kannst Du dies mit dieser Formel machen. Dafür brauchst Du zusätzlich die Höhe h des Kegels. Für das Volumen brauchst Du R, r und h. Damit sind wir am Ende dieses Videos angekommen. Ich hoffe es hat Dir weitergeholfen und Du kannst jetzt das Volumen und die Oberfläche eines Kegelstumpfes berechnen. Mein Name ist Jonathan. Hoffentlich sehen wir uns bald wieder. Bis dahin wünsche ich Dir viel Freude an der Mathematik.

Berechnungen am Kegelstumpf Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Berechnungen am Kegelstumpf kannst du es wiederholen und üben.

  • Gib die Formeln wieder, mit denen sich der Oberflächeninhalt des Kegelstumpfes berechnen lässt.

    Tipps

    Der Oberflächeninhalt eines Kegels lässt sich mit der Formel $A_O = \pi \cdot ( r^2 + R^2 + m (R + r))$ berechnen.

    Lösung

    Wir kennen die folgenden Größen beim Kegelstumpf $ R = 10cm$, $r = 4~cm$, $h = 8~cm$, $m = 10~cm$. Außerdem wissen wir, dass sich der Oberflächeninhalt eines Kegelstumpfes mit der folgenden Formel berechnen lässt $A_O =\pi \cdot ( r^2 + R^2 + m (R + r))$. Setzen wir diese Werte nun in die Formel ein, erhalten wir:

    $\begin{align} A_O& = \pi \cdot ( r^2 + R^2 + m (R + r)) \\ & = \pi \cdot ( (4~cm)^2 + (10~cm)^2 + 10~cm \cdot (10~cm + 4~cm)) \\ & = \pi \cdot ( 16~cm^2 + 100~cm^2 + 10~cm \cdot 14~cm) \\ & = \pi \cdot ( 16~cm^2 + 100~cm^2 + 140~cm^2) \\ & = \pi \cdot 256~cm^2 \\ A_O& \approx 804~cm^2 \end{align}$

  • Beschreibe die Formeln und Voraussetzungen beim Kegelstumpf.

    Tipps

    Hier kannst du die Skizze eines allgemeinen Kegelstumpfes erkennen. Ordne den Buchstaben die Begriffe Höhe, Mantellinie, Radius der Grundfläche und Radius der Deckfläche zu.

    Die Formel zur Berechnung des Oberflächeninhalts lautet: $A_O = \pi \cdot ( r^2 + R^2 + m \cdot (R + r))$

    Die Formel zur Berechnung des Volumens lautet: $V = \frac{\pi}{3} \cdot h \cdot ( R^2 + R \cdot r + r^2)$

    Lösung

    Die Oberfläche eines Kegelstumpfes berechnet man mit der Formel $A_O = π \cdot ( r^2 + R^2 + m (R + r))$. Wie du schon an der Formel sehen kannst, benötigst du dafür den Radius der Grundfläche $R$ und der Deckfläche $r$. Außerdem benötigst du die Größe der Mantellinie $m$. Diese kannst du entweder durch Messen oder durch die Formel $m = \sqrt{ h^2 + (R -r)^2}$ bestimmen. Solltest du die Formel zur Bestimmung von $m$ nutzen, musst du zusätzlich wissen, wie hoch der Kegel ist. Das Volumen eines Kegels berechnest du mit der Formel $V = \frac{\pi}{3} \cdot h \cdot ( R^2 + R \cdot r + r^2)$. Wie du siehst, brauchst du hierfür die Mantellinie $m$ nicht. Allerdings musst du die Radien und die Höhe des Kegelstumpfes kennen.

  • Berechne das Volumen des Kegelstumpfes.

    Tipps

    Die Formel zur Berechnung des Volumens lautet: $V = \frac{\pi}{3} \cdot h \cdot ( R^2 + R \cdot r + r^2)$

    Das Kommutativgesetz besagt, dass Zahlen die addiert werden untereinander vertauscht werden dürfen.

    $3~cm + 7~cm + 5~cm = 7~cm + 5~cm + 3~cm$

    Hier ein Zwischenergebnis bei der Berechnung des Volumens.

    $V=\frac{\pi}{3} \cdot 8~cm \cdot 156~cm^2$

    Lösung

    Wir wissen, dass der Kegelstumpf folgende Werte hat. $ R = 10cm, r = 4~cm, h = 8~cm, m = 10~cm$

    Setzen wir diese Werte in die Formel für $V$ ein, erhalten wir:

    $\begin{align} V &= \frac{\pi}{3} \cdot 8~cm \cdot ( (10~cm)^2 + 10~cm \cdot 4~cm + (4~cm)^2) \\ &= \frac{\pi}{3} \cdot 8~cm \cdot ( 100~cm^2 + 40~cm^2 + 16~cm^2) \\ &= \frac{\pi}{3} \cdot 8~cm \cdot 156~cm^2 \\ &=\pi \cdot 416~cm^3 \\ V& \approx 1307~cm^3 \end{align}$

  • Bestimme das Volumen $V_K$ des Körpers.

    Tipps

    Das Volumen eines Kegelstumpfes berechnet man mit der Formel $V_{\text{Kegelstumpf}}=\frac{\pi}{3} \cdot h \cdot \left( R^2+R\cdot r + r^2 \right)$.

    Wenn der Radius der Deckfläche dem entsprechenden Radius der Grundfläche des Kegels entspricht, dann gilt für die gleichen Größen für das Volumen eine Kegels $V_{\text{Kegel}}=\frac{\pi}{3} \cdot h \cdot r^2$.

    Das Volumen des Körper berechnest du, in dem du das Volumen des Kegels von dem Volumen des Kegelstumpfes abziehst, da der Kegel aus dem Kegelstumpf heraus gebohrt werden soll. Es gilt dann:

    $V_K=V_{K1}-V_{K2}$.

    Hier findest du die Zwischenergebnisse für die Volumen des Kegels und des Kegelstumpfes. Der Einfachheit halber sind die Einheiten nicht mit angegeben.

    $V_{K1}=\pi \cdot 10791\frac23$ und $V_{K2}= \pi \cdot 2625$

    Lösung

    Um das Volumen unserer Figur zu bestimmen, müssen wir drei Rechnungen durchführen.

    1. Wir berechnen das Volumen des Kegelstumpfes $V_{K1}$.
    2. Wir berechnen das Volumen des kegelförmigen Kraters $V_{K2}$.
    3. Wir subtrahieren das Volumen des Kegels vom Volumen des Kegelstumpfes $ V_K = V_{K1} - V_{K2}$
    Das Volumen von einem Kegelstumpf berechnen wir mit der Formel $V = \frac{\pi}{3} \cdot h \cdot ( R^2 + R \cdot r + r^2 )$. Wir kennen die Größen $ R = 20~cm$, $r = 15~cm$ und h = 35~cm$. Wir setzen die Werte in die Formel ein. Der Einfachheit und Übersicht halber werden die Einheiten weggelassen.

    $\begin{align} V_{K1} &= \frac{\pi}{3} \cdot 35 \cdot ( 20^2+ 20 \cdot 15 + 15^2) \\ & = \frac{\pi}{3} \cdot 35 \cdot ( 400 + 300 + 225) \\ & = \frac{\pi}{3} \cdot 35 \cdot 925\\ & = \pi \cdot 10~791\frac23 \\ & \approx 3~3903~\left[ cm^3 \right] \\ \end{align}$

    Wir berechnen jetzt das Volumen des Kegels. Dazu nutzen wir die Formel: $ V = \frac{\pi}{3} \cdot r^2 \cdot h$. Da die Spitze des Kegels bis zum Mittelpunkt der Grundfläche des Kegelstumpfes geht, hat er genau die gleiche Höhe wie der Kegelstumpf. Der Radius des Kegels ist genauso groß, wie der Radius der Deckfläche des Kegelstumpfes. Es gilt also: $r_{K2} = r_{K1}$. Also können wir das Volumen ausrechnen.

    $\begin{align} V_{K2}& = \frac{\pi}{3} \cdot 15^2 \cdot 35 \\ &= \frac{\pi}{3} \cdot 225 \cdot 35 \\ &= \frac{\pi}{3} \cdot 7~875 \\ & = \pi \cdot 2~625 \\ & \approx 8~247 \left[ cm^3 \right] \end{align}$

    Zuletzt subtrahieren wir das Volumen des Kegels vom Kegelstumpf und erhalten das Volumen der Figur:

    $\begin{align} V_{K}& = V_{K1} - V_{K2} \\ & \approx 33~903~cm^3 - 8~247~cm^3 \\ & \approx 25~656~cm^3 \end{align}$

    Der Körper hat ein Volumen von $25~656~cm^3$.

  • Prüfe, wie viel Papiermüll in Tatjanas Papierkorb hineinpasst.

    Tipps

    Drehe den Papierkorb auf den Kopf. Welche geometrische Form erkennst du in ihm?

    Hier kannst du die Skizze eines allgemeinen Kegelstumpfes erkennen. Welche Größen sind gegeben? Beachte, dass der Durchmesser eines Kreises doppelt so lang ist, wie der Radius.

    Wenn du den Papierkorb umdrehst, besitzt er die Form eines Kegelstumpfes. Die Grundfläche hat einen Durchmesser von $46~cm$. Die Deckfläche hat einen Durchmesser von $30~cm$. Außerdem ist die Höhe des Kegelstumpfes mit $50~cm$ gegeben.

    Die Formel zur Berechnung des Volumens eines Kegelstumpfes lautet: $V = \frac{\pi}{3} \cdot h \cdot ( R^2 + R \cdot r + r^2)$.

    Lösung

    Wenn du den Papierkorb umdrehst, besitzt er die Form eines Kegelstumpfes. Die Grundfläche hat einen Durchmesser von $46~cm$. Die Deckfläche hat einen Durchmesser von $30~cm$. Außerdem ist die Höhe des Kegelstumpfes mit $50~cm$ gegeben. Wenn wir wissen wollen, wie viel Müll in ihn hineinpasst, müssen wir sein Volumen berechnen. Der Durchmesser ist doppelt so lang wie der Radius. Also müssen wir die Durchmesser der Grund- und Deckfläche halbieren. Für die Größen des Kegelstumpfes erhalten wir dann $ r = 15~cm$, $R = 23~cm$ und $h = 50~cm$. Das Volumen berechnen wir dann so.

    $\begin{align} V &= \frac{\pi}{3} \cdot h \cdot ( R^2+ R \cdot r + r^2) \\ &= \frac{\pi}{3} \cdot 50~cm \cdot ( (23~cm)^2 + 23~cm \cdot 15~cm + (15~cm)^2) \\ & = \frac{\pi}{3} \cdot 50~cm \cdot ( 529~cm^2 + 345~cm^2 + 225~cm^2 ) \\ & = \frac{\pi}{3} \cdot 50~cm \cdot 1099~cm^2 \\ & = \frac{\pi}{3} \cdot 18~316\frac23~cm^3 \\ V& \approx 57~544~cm^3 \end{align}$

    In Tatjanas Papierkorb passen ungefähr $57~544~cm^3$ Papier hinein. Das entspricht ungefähr $57,544$ Litern.

  • Bestimme, wie viel Fläche Lisa bekleben muss.

    Tipps

    Der umgedrehte Blumentopf ist ein Kegelstumpf. Der Durchmesser der Grundfläche ist $28~cm$ lang und der der Deckfläche $16~cm$ lang. Die Höhe des Kegelstumpfes beträgt $20~cm$. Beachte, dass der Durchmesser doppelt so lang ist, wie der Radius.

    Die Formel zur Berechnung der Mantelfläche eines Kegelstumpfes lautet $A_M = \pi \cdot m ( R + r)$.

    Wir berechnen $m$ mit der Formel $m = \sqrt{ h^2 + (R -r)^2}$.

    Lösung

    Wenn du den Blumentopf auf den Kopf stellst, erkennst du, dass der Blumentopf die Form eines Kegelstumpfes hat. Um zu wissen, wie viel Fläche Lisa mit Servietten bekleben muss, müssen wir die Mantelfläche des Kegelstumpfes berechnen. Die Formel für den Flächeninhalt der Mantelfläche lautet: $A_M = \pi \cdot m ( R + r)$. $R$ ist $28~cm:2=14~cm$ lang und $r$ ist $16~cm:2=8~cm$ lang.

    Da wir noch nicht wissen, wie groß die Mantellinie $m$ ist, können wir diese mit der Formel $m = \sqrt{ h^2 + ( R -r)^2}$ berechnen. Wir kennen die folgenden Werte $ r = 8cm, R = 14~cm, h = 20~cm$. Wir rechnen.

    $\begin{align} m& = \sqrt{ (20~cm)^2 + (14~cm -8~cm)^2} \\ &= \sqrt{ 400~cm^2 + (6~cm)^2} \\ &= \sqrt{ 400~cm^2 + 36~cm^2} \\ &= \sqrt{ 436~cm^2} \\ m &\approx 21~cm \end{align}$

    Nun haben wir alle Werte um den Mantelflächeninhalt berechnen zu können.

    $\begin{align} A_M&= \pi \cdot 21cm \cdot ( 14~cm + 8~cm) \\ &= \pi \cdot 21cm \cdot 22~cm \\ &= \pi \cdot 462~cm^2 \\ & \approx 1451,4~cm^2 \\ \end{align}$

    Lisa muss ungefähr $1451,4~cm^2$ Fläche mit Servietten bekleben.