Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge – Einführung

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Ziehen mit Zurücklegen und mit Beachtung der Reihenfolge – Einführung

Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge – Einführung

Ziehen mit Zurücklegen und ohne Beachtung der Reihenfolge – Einführung

Ziehen ohne Zurücklegen und ohne Beachtung der Reihenfolge – Einführung

Pascalsches Dreieck

Kombinationen – Ziehen ohne Reihenfolge

Variationen – Ziehen mit Reihenfolge

Ziehen aus einer Urne – Geordnete Stichproben

Kombinatorik – Übungen
Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge – Einführung Übung
-
Gib die Anzahl möglicher Kombinationen an.
TippsDie Formel für die Anzahl der Möglichkeiten $M$ beim Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge ist:
$M=\displaystyle \binom{n}{k} \cdot k!$
Der Binomialkoeffizient lässt sich durch folgende Formel berechnen:
$\displaystyle \binom{n}{k}=\dfrac{n!}{\left(n-k\right)!\cdot k!}$
Setze für $n$ die Anzahl der Spielfelder und für $k$ die Anzahl der gemerkten Züge ein und rechne das Ergebnis aus.
Das Spielfeld ist quadratisch mit einer Kantenlänge von drei Feldern.
LösungIm Urnenmodell entspricht das Spiel „Drei gewinnt“ dem Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge. Hierbei ist $n$ die Anzahl der Spielfelder und $k$ die Anzahl der Spielzüge, die Quentin auswendig lernen will. Die Formel für die Anzahl der Möglichkeiten ist $\binom{n}{k}\cdot k!$.
Wir setzen für $n$ die Anzahl der Spielfelder und für $k$ die Anzahl der gemerkten Spielzüge ein, d. h. $n=9$ und $k=4$. Damit erhalten wir:
$\begin{array}{ll} \displaystyle \binom{9}{4} \cdot 4! &= \dfrac{9!}{4! \cdot (9-4)!} \cdot 4! \\ &= \dfrac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(4 \cdot 3 \cdot 2 \cdot 1) \cdot (5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)} \cdot 4 \cdot 3 \cdot 2 \cdot 1 \\ &= 9 \cdot 8 \cdot 7 \cdot 6 \\ &= 3\,024 \end{array}$
Alternativ können wir die Lösung auch folgendermaßen herleiten: Für die Wahl des ersten Spielsteins stehen $9$ freie Felder zur Auswahl. Für den zweiten dann nur noch $8$ freie Felder, für den dritten $7$ und für den vierten $6$. Die Kombination aller $9$ Möglichkeiten für den ersten Stein mit allen $8$ Möglichkeiten für den zweiten, allen $7$ Möglichkeiten für den dritten und $6$ für den vierten ergibt insgesamt $9 \cdot 8 \cdot 7 \cdot 6 = 3\,024$ Kombinationsmöglichkeiten.
-
Bestimme die Anzahl möglicher Kombinationen.
TippsFür das Spiel „Drei gewinnt“ ist $n=9$ die Anzahl der Spielfelder und $k=4$ die Anzahl der Spielzüge, die Quentin auswendig lernt.
Für ein vergleichbares Spiel mit $n=10$ und $k=3$ wäre die Anzahl der möglichen Spielanfänge $10 \cdot 9 \cdot 8 = 720$.
Zur Berechnung von $\binom{n}{k} \cdot k!$ multipliziert man die ersten $k$ Zahlen in absteigender Reihenfolge, beginnend mit $n$.
LösungIm Urnenmodell entspricht das Spiel „Vier gewinnt“ dem Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge. Hierbei ist $n$ die Anzahl der Spielfelder und $k$ die Anzahl der Spielzüge, die Quentin auswendig lernen will. Die Formel für die Anzahl der Möglichkeiten ist $\binom{n}{k} \cdot k!$.
Wir setzen also für $n$ die Anzahl der Spielfelder und für $k$ die Anzahl der gemerkten Spielzüge ein. Das Spielbrett von „Vier gewinnt“ ist quadratisch und hat an jeder Kante $4$ Felder, es hat demnach $n=16$ Felder. Um sich sicher zu fühlen, müsste Quentin alle Möglichkeiten für die ersten $k=6$ Spielzüge auswendig lernen. Das sind die möglichen Spielanfänge:
$\begin{array}{ll} \displaystyle \binom{16}{6} \cdot 6! &= \dfrac{16}{6! \cdot (16-4)!} \cdot 4! \\ &= 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \\ &= 5\,765\,760 \end{array}$
Alternativ können wir die Lösung auch folgendermaßen herleiten: Für die Wahl des ersten Spielsteins stehen $16$ freie Felder zur Auswahl. Für den zweiten dann nur noch $15$ freie Felder, für den dritten $14$, für den vierten $13$, für den fünften $12$ und für den sechsten noch $11$ freie Felder. Die Kombination aller dieser Möglichkeiten ergibt demnach $16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 = 5\,765\,760$ mögliche Spielanfänge.
-
Ermittle die Anzahl möglicher Kombinationen für die gegebenen Werte.
TippsMathematisch entspricht dieses Problem dem Ziehen von $k$ aus $n$ Kugeln ohne Zurücklegen und mit Beachtung der Reihenfolge.
Für $n=7$ und $k=3$ erhalten wir $7 \cdot 6 \cdot 5 = 210$.
LösungWir rechnen im Urnenmodell für den Fall Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge. Es werden $k$ aus $n$ Kugeln gezogen. Die Formel für die Anzahl der Möglichkeiten können wir folgendermaßen verstehen und herleiten: Für die Ziehung stehen $n$ Kugeln zur Auswahl. Es gibt also $n$ verschiedene Möglichkeiten, eine Kugel zu ziehen.
Bei der zweiten Ziehung sind nur noch $n-1$ Kugeln in der Urne. Es gibt also auch nur noch $n-1$ verschiedene Möglichkeiten.
Kombiniert man die beiden ersten Ziehungen, so erhält man $n \cdot (n-1)$ verschiedene Möglichkeiten, zwei Kugeln zu ziehen.So verfährt man weiter, bis $k$ Kugeln gezogen sind. Nach $k$ Ziehungen sind nur noch $n-k$ Kugeln in der Urne. Für die zuletzt gezogene Kugel gab es also gerade noch $n-k+1$ Möglichkeiten. Das ergibt zusammengefasst also:
$\begin{array}{ll} n \cdot (n-1) \cdot \ldots \cdot (n-k+1) &= n \cdot (n-1) \cdot \ldots \cdot (n-k+1) \cdot \dfrac{(n-k)!}{(n-k)!} \\ \\ &= \dfrac{n!}{(n-k)!} \\ \\ &= \dfrac{n!}{(n-k)! \cdot k!} \cdot k! \\ \\ &= \displaystyle \binom{n}{k} \cdot k! \end{array}$
Wir rechnen die einzelnen Beispiele durch:
- Für $n=7$ und $k=4$ erhalten wir:
- Für $n=10$ und $k=3$ erhalten wir:
- Für $n=15$ und $k=5$ ergibt sich:
- Bei $n=11$ und $k=6$ lautet die Rechnung:
- Und für $n=13$ und $k=4$ erhalten wir
-
Erschließe die Anzahl möglicher Kombinationen.
TippsDas Kartenziehen verläuft ganz ähnlich wie „Drei gewinnt“: Die Spielkarten entsprechen den Spielfeldern.
Für die Anzahl der Buchstabenfolgen beim Scrabble ist der zweite Spieler nicht relevant – es genügt ein Spieler und seine Auswahl.
Für den ersten Scrabble-Buchstaben gibt es $26$ Auswahlmöglichkeiten, für den zweiten nur noch $25$.
LösungAlle Beispiele fallen im Urnenmodell unter Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge. Wir gehen die Beispiele durch, um die Werte von $n$ und $k$ zu bestimmen:
- Beim Ziehen aus dem Skatblatt mit $36$ Karten ist $n=36$. Es werden je zwei, also insgesamt $k=4$, Karten gezogen. Die Anzahl der möglichen Spielverläufe ist demnach:
- Beim Scrabble hat jeder Spieler die Möglichkeit, aus $n=7$ Steinen Wörter zu legen. Die Anzahl der möglichen Buchstabenfolgen mit $k=6$ Buchstaben ist:
- Beim Spiel „Schiffe versenken“ wird auf den weißen Feldern eines Schachbretts gespielt, daher ist $n=32$. Die Anzahl der Möglichkeiten für $k=3$ Treffer mit Reihenfolge ist:
- Jeder Regenbogen besteht aus $k=5$ Streifen. Zur Auswahl stehen $n=12$ Farben aus dem Malkasten. Es gibt also so viele verschiedene Regenbogen:
-
Bestimme die Formel für die Berechnung der Anzahl möglicher Kombinationen.
TippsDas Spiel „Drei gewinnt“ hat $n=9$ Spielfelder. Die Anzahl der möglichen Spielanfänge bis zum Zug $k=4$ ist $9 \cdot 8 \cdot 7 \cdot 6$.
Die Anzahl der Möglichkeiten beim Ziehen mit Zurücklegen und mit Beachtung der Reihenfolge von $k$ aus $n$ Kugeln ist $n^k$.
Die Anzahl möglicher Kugeln beim ersten Ziehen ist $n$. Beim Ziehen ohne Zurücklegen wird mit jedem Zug die Anzahl der Kugeln geringer.
LösungWir gehen die einzelnen Formeln durch und geben ihre Bedeutung jeweils für das Ziehen von $k$ aus $n$ Kugeln an:
$\displaystyle \binom{n}{k} \cdot k!$ ist die Anzahl der Möglichkeiten beim Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge.
$\dfrac{n!}{(n-k)!}$ ist ebenfalls die Anzahl der Möglichkeiten beim Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge.
$\displaystyle \binom{n}{k}$ ist die Anzahl der Möglichkeiten beim Ziehen ohne Zurücklegen und ohne Beachtung der Reihenfolge.
$\displaystyle \binom{n+k-1}{k}$ ist die Anzahl der Möglichkeiten beim Ziehen mit Zurücklegen und ohne Beachtung der Reihenfolge.
$\dfrac{n!}{k! \cdot (n-k)!}$ ist ebenfalls die Anzahl der Möglichkeiten beim Ziehen ohne Zurücklegen und ohne Beachtung der Reihenfolge.
$\dfrac{(n+k-1)!}{k! \cdot (n-1)!}$ ist wiederum die Anzahl der Möglichkeiten beim Ziehen mit Zurücklegen und ohne Beachtung der Reihenfolge.
Alternativ können wir die richtigen Formeln für die Anzahl der Möglichkeiten beim Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge auch folgendermaßen herleiten: Für die erste gezogene Kugel stehen $n$ Kugeln zur Auswahl. Es gibt also $n$ verschiedene Möglichkeiten, eine Kugel zu ziehen. Beim zweiten Ziehen sind nur noch $n-1$ Kugeln in der Urne. Es gibt also nur noch $n-1$ verschiedene Möglichkeiten, eine Kugel zu ziehen. Kombiniert man die beiden ersten Ziehungen, so erhält man $n \cdot (n-1)$ verschiedene Reihenfolgen.
Nach $k$ Ziehungen sind dementsprechend nur noch $n-k$ Kugeln in der Urne. Für die zuletzt gezogene Kugel gab es also gerade noch $n-k+1$ Möglichkeiten. Das ergibt zusammengefasst also:
$\begin{array}{ll} n \cdot (n-1) \cdot \ldots \cdot (n-k+1) &= n \cdot (n-1) \cdot \ldots \cdot (n-k+1) \cdot \dfrac{(n-k)!}{(n-k)!} \\ &= \dfrac{n!}{(n-k)!} \\ &= \dfrac{n!}{(n-k)! \cdot k!} \cdot k! \\ &= \displaystyle \binom{n}{k} \cdot k! \end{array}$
-
Arbeite die Beispiele zum Fall „Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge“ heraus.
TippsDie $5$ einzustellenden Ziffern beim Zahlenschloss sind unabhängig voneinander. Das Einstellen der ersten Ziffern reduziert die Möglichkeiten der anderen Ziffern nicht.
Eine Melodie besteht nicht notwendigerweise aus verschiedenen Tönen.
Eagle und Quentin sind mit $13$ Kumpels auf dem Sportplatz. Sie brauchen aber nur zwei Mannschaften mit je $6$ Spielern und spielen selbst auch mit.
Lösung- Quentins Zahlenschloss entspricht im Urnenmodell dem Ziehen mit Zurücklegen und mit Beachtung der Reihenfolge, denn die Ziffern der $5$ Ringe können unabhängig voneinander eingestellt werden (also auch mehrmals dieselbe Ziffer). Die Auswahl der ersten Ziffer entspricht somit dem Ziehen der ersten aus $n=10$ Kugeln. Für die zweite Ziffer stehen dann wieder $10$ Ziffern zur Auswahl. Die Anzahl möglicher Kombinationen ist also $10^5 = 100 000$.
- Da Quentins Murmeln, bis auf die Farbe, nicht unterscheidbar sind, kann es sich hierbei nicht um Ziehen mit Beachtung der Reihenfolge handeln.
- Die Anzahl möglicher Reihungen der Startnummern beim Fahrradrennen ist ein typisches Beispiel für Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge. Für $n=14$ Teilnehmer und $k=3$ Siegerplätze gibt es $14 \cdot 13 \cdot 12 = 2 184$ verschiedene Möglichkeiten, das Podest zu besetzen.
- Auf Quentins Blockflöte kann man auch sehr langweilige Melodien spielen, die denselben Ton mehrmals wiederholen. Es handelt sich also um Ziehen mit Zurücklegen und mit Beachtung der Reihenfolge. Mit $k=10$ aufeinander folgenden aus $n=7$ verschiedenen Tönen gibt es $7^10 = 282 475 249$ verschiedene Melodien.
- Eagle und Quentin wählen jeweils noch $5$ Spieler aus. Insgesamt werden also $k=10$ Spieler gewählt. Jeder Spieler kann nur einmal gewählt werden und die Berücksichtigung der Spielpositionen entspricht der Beachtung der Reihenfolge. Es handelt sich also um Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge. Bei $n=13$ zur Verfügung stehenden Kumpels gibt es daher $13 \cdot 12 \cdot 11 \dot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \dot 4 = 1 037 836 800$ verschiedene Teamzusammenstellungen.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.224
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt