Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Übungsaufgabe: Der geostationäre Satellit

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 5.0 / 1 Bewertungen
Die Autor*innen
Avatar
sofatutor Team
Übungsaufgabe: Der geostationäre Satellit
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Übungsaufgabe: Der geostationäre Satellit Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Lerntext Übungsaufgabe: Der geostationäre Satellit kannst du es wiederholen und üben.
  • Gib die Definition des geostationären Satelliten an.

    Tipps

    Ein geostationärer Satellit befindet sich über dem Äquator.

    Es ist nur eine Aussage richtig.

    Kein Objekt in Erdnähe kann im Weltall stillstehen. Es würde immer von der Erde oder einem anderen Himmelskörper angezogen werden und anfangen, sich zu bewegen.

    Lösung

    Ein geostationärer Satellit ist ein Satellit, der sich nicht bewegt, sondern an einem festen Punkt im Weltall stillsteht. $\Rightarrow$ Diese Aussage ist falsch.

    Begründung: Kein Objekt in Erdnähe kann im Weltall stillstehen. Es würde immer von der Erde oder einem anderen Himmelskörper angezogen werden und anfangen, sich zu bewegen.

    Ein geostationärer Satellit bewegt sich synchron mit einem Ort auf dem Äquator mit, sodass er scheinbar darüber stillsteht. $\Rightarrow$ Die Aussage ist richtig.

    Jeder Satellit, der die gleiche Winkelgeschwindigkeit wie die Erde hat, ist ein geostationärer Satellit. $\Rightarrow$ Diese Aussage ist falsch.

    Begründung: Die gleiche Winkelgeschwindigkeit wie die Erde zu haben ist zwar eine Bedingung für den geostationären Satelliten, allein das reicht aber nicht aus. Er muss auch über dem Äquator sein, damit er über einem Punkt auf der Erde scheinbar stillstehen kann.

    Ein geostationärer Satellit ist ein Satellit, der eine Raumstation der Erde beherbergt. $\Rightarrow$ Diese Aussage ist falsch.

  • Stelle die Überlegungen dar, die zur Berechnung des geostationären Satelliten führen.

    Tipps

    Die Formel für die Gravitationskraft ist:

    $F_\text{G}=G\cdot \dfrac{m \cdot M}{r^2}$

    Die Masse des Zentralkörpers, also der Erde, wird mit $M$ bezeichnet.

    „Je größer ... desto kleiner“ bedeutet meist, dass sich eine Größe im Nenner befindet.

    Lösung

    Ein Satellit bewegt sich auf einer Kreisbahn mit Radius $r$ und benötigt für einen Umlauf die Zeit $T$. $\leftrightarrow$ Für seine Winkelgeschwindigkeit $\omega$ gilt: $\omega=\dfrac{2\pi \cdot r}{T}$.

    Die Winkelgeschwindigkeit $\omega$ ist bei einer Kreisbewegung der Quotient aus zurückgelegtem Drehwinkel und der dafür benötigen Zeit. Für eine Umdrehung, also den Vollwinkel $360^\circ~\widehat{=}~2\pi$, wird genau die Umlaufdauer $T$ benötigt.

    Die Gravitationskraft wirkt als Zentripetalkraft. $\leftrightarrow$ $G\cdot \dfrac{m \cdot M}{r^2}=m \cdot \dfrac{v^2}{r}$.

    Bei der Bewegung eines Satelliten auf einer Kreisbahn um einen Zentralkörper wirkt die Gravitationskraft, die der im Allgemeinen sehr, sehr viel massenreichere Zentralkörper auf einen Satelliten ausübt, als Zentripetalkraft, also als diejenige Kraft, die den Satelliten auf seiner Kreisbahn hält. Würde sie nicht konstant wirken, würde der Satellit mit seiner Bahngeschwindigkeit $v$ geradeaus wegfliegen.

    Je kleiner der Bahnradius ist, desto größer ist die Bahngeschwindigkeit. $\leftrightarrow$ $v=\sqrt{G \cdot \dfrac{M}{r}}$

    Durch Umformen der Kräfteidentität von Gravitationskraft und Zentripetalkraft erhält man die Gleichung für $v$, die verdeutlicht, dass die Geschwindigkeiten auf einer Kreisbahn kleiner werden, je größer der Bahnradius wird. Formt man die Gleichung noch weiter um, erhält man das 3. Kepler'sche Gesetz in der Fassung für Kreisbahnen.

    Je größer der Bahnradius ist, desto größer wird bei konstanter Winkelgeschwindigkeit die Bahngeschwindigkeit. $\leftrightarrow$ $v=\omega \cdot r$

    Die Gleichung ergibt sich aus den Definitionen der Bahngeschwindigkeiten und der Winkelgeschwindigkeit $v=\frac{s}{t}$ und $\omega=\frac{\varphi}{t}$. Setzt man in beide Definitionen für die Zeit eine Umlaufzeit ein, also $T$, ist der zurückgelegte Weg der Kreisumfang $s=2\pi \cdot r$ und der überstrichene Drehwinkel der Vollwinkel $\varphi=2\pi$. Es gilt dann:

    $v=\dfrac{2\pi}{T} \cdot r$

    $\omega=\dfrac{2\pi}{T}$

    Dann ist $v=\omega \cdot r$.

    Der Bahnradius des geostationären Satelliten kann berechnet werden, wenn die Erdmasse bekannt ist. $\leftrightarrow$ $r=\sqrt[3]{G \cdot \dfrac{MT^2}{4\pi^2}}$.

    In diese Formel wurde schließlich der Zusammenhang zwischen Winkelgeschwindigkeit bzw. Bahngeschwindigkeit, Bahnradius und Umlaufzeit eingesetzt. Nun kann damit die Bahn des geostationären Satelliten ausgerechnet werden.

  • Berechne die Winkelgeschwindigkeit der Erde und damit die Bahngeschwindigkeit des geostationären Satelliten.

    Tipps

    Der Bahnradius bezieht sich auf den Erdmittelpunkt.

    Es gilt:

    $\pu{1 h}=\pu{3600 s}$

    $\pu{1 min} = \pu{60 s}$

    Die Winkelgeschwindigkeit ist eine sehr kleine Zahl. Ihre Einheit ist $\pu{1 1//s}$.

    Lösung

    Gegeben:

    Dauer einer Erdotation: $T=23~\text{h}~56~\text{min}~4~\text{s}$

    Höhe des geostationären Satelliten über dem Erdboden: $h=35\,785~$ km

    Die Höhe des geostationären Satelliten über dem Erdboden beträgt ca. $36\,000~\text{km}$.

    Erdradius: $R=6\,378~\text{km}$

    Gesucht:

    Bahnradius $r$

    Winkelgeschwindigkeit $\omega$

    Bahngeschwindigkeit $v$

    Formeln:

    $r =~$ h $~+~R$

    Um den Bahnradius zu erhalten, muss zur Höhe über dem Erdboden der Erdradius addiert werden.

    $\omega = \dfrac{2\pi}{T}$

    $v=\omega~ \cdot ~$ r

    Bei einer Kreisbewegung ist die Bahngeschwindigkeit proportional zum Bahnradius; die Proportionalitätskonstante ist die Winkelgeschwindigkeit $\omega$.

    Rechnung:

    Umrechnung von $T$ in Sekunden:

    $T=(23~\cdot ~$ $\boldsymbol{3\,600}$ $ + 56~ \cdot$ 60 $+4) ~\text{s}~=~$ 86$\,$164 $~\text{s}$

    Bahnradius:

    $r=35\,785~\text{km}+~$ 6$\,$378 $~\text{km}=$ 42$\,$163 $~\text{km}$

    Winkelgeschwindigkeit (auf 3 Nachkommastellen gerundet):

    $\omega=\dfrac{2\pi}{\pu{86164 s}}=~$ 7,292 $\cdot \pu{10^{-5} 1//s}$

    Bahngeschwindigkeit (auf eine Stelle gerundet):

    v$~=~\omega \cdot r \approx ~$ 3 $~\pu{km //s}$

  • Untersuche die folgenden Aussagen auf ihren Wahrheitsgehalt.

    Tipps

    Es sind drei Aussagen korrekt.

    Lösung

    Die Winkelgeschwindigkeit eines Ortes auf der Erdoberfläche ist abhängig vom Breitengrad. $\Rightarrow$ Diese Aussage ist falsch.

    Begründung: Die Punkte auf der Erdoberfläche drehen sich aufgrund der Erdrotation alle mit derselben Winkelgeschwindigkeit. Allerdings ist der Abstand von der Drehachse und damit die Bahngeschwindigkeit breitenabhängig.

    Die Bahngeschwindigkeit eines Satelliten ist umso größer, je höher sein Bahnradius ist. $\Rightarrow$ Diese Aussage ist falsch.

    Begründung: Das Gegenteil ist korrekt, wie sich etwa an der Formel $v=\sqrt{G \cdot \dfrac{M}{r}}$ ablesen lässt.

    Bei einer Kreisbewegung ist die Bahngeschwindigkeit proportional zum Radius und zur Winkelgeschwindigkeit. $\rightarrow$ Diese Aussage ist richtig.

    Begründung: Für eine Kreisbewegung gilt der Zusammenhang $v=\omega \cdot r$.

    Zu jedem Bahnradius eines sich auf einer Kreisbahn bewegenden Erdsatelliten gibt es genau eine passende Bahngeschwindigkeit.

    $\rightarrow$ Die Aussage ist richtig.

    Begründung: Da die Kreisbewegung eines Satelliten durch die als Zentripetalkraft wirkende Gravitationskraft aufrecht erhalten wird, gilt $v=\sqrt{G \cdot \dfrac{M}{r}}$.

    Die Bahngeschwindigkeit eines Erdsatelliten hängt von seiner Motorleistung ab. $\rightarrow$ Diese Aussage ist falsch.

    Begründung: Aufgrund der Gravitationskraft bewegt sich ein Erdsatellit ohne künstlichen Antrieb auf seiner Kreisbahn. Er benötigt lediglich zur Korrektur der Bahn bei äußeren Störungen und am Anfang, wenn er auf seine Bahn gebracht wird, Steuerdüsen.

    Hätte die Erde eine achtmal so große Masse, wäre der Bahnradius des geostationären Satelliten bei gleicher Dauer der Erdrotation doppelt so groß wie der reale. $\rightarrow$ Diese Aussage ist richtig.

    Begründung: Dies ergibt sich aus der folgenden Gleichung $r=\sqrt[3]{G \cdot \dfrac{MT^2}{4\pi^2}}$ und der Tatsache, dass $\sqrt[3]{8}=2$ gilt.

  • Beschreibe den geostationären Satelliten.

    Tipps

    Ein geostationärer Satellit soll sich immer genau über einem bestimmten Ort auf der Erde befinden.

    Die Rotation der Erde um ihre Achse dauert ziemlich genau einen Tag.

    Lösung

    Für viele Zwecke ist es sinnvoll einen Satelliten zu haben, der speziell für einen Ort auf der Erde immer zugänglich ist: den geostationären Satelliten.

    Das Besondere an einem geostationären Satelliten ist, dass er scheinbar über einem Ort auf der Erde stillsteht. Da die Erde sich aber selbst um ihre eigene Achse dreht, muss sich der Satellit mit dem Ort auf der Oberfläche mitbewegen.

    Da ein Ort auf der Erde bei der täglichen Bewegung um die Erdachse eine Kreisbahn beschreibt, muss auch der geostationäre Satellit auf einer Kreisbahn unterwegs sein.

    Die ist aber nur möglich, wenn er sich über einem Ort auf dem Äquator befindet. Seine Bahn ist dann sozusagen eine Projektion des Äquators ins Weltall.

  • Berechne die kinetische, die potentielle und die Gesamtenergie eines geostationären Satelliten.

    Tipps

    Eine negative Gesamtenergie liegt vor, wenn es sich um einen gebundenen Zustand handelt, wie es bei einem Satelliten auf einer Kreisbahn der Fall ist.

    Lösung

    Wir berechnen zunächst die kinetische Energie des geostationären Satelliten.

    Dazu müssen wir zunächst die Geschwindigkeit in Meter pro Sekunde umrechnen:

    $v=\pu{3 km//s}=\boldsymbol{3\,000\,~ \pu{m//s}}$

    Jetzt können wir die kinetische Energie in der richtigen Einheit berechnen:

    $E_\text{kin} =\boldsymbol{\frac{1}{2}mv^2}=\frac{1}{2} \cdot \boldsymbol{\pu{500 kg} \cdot (3\,000~ \pu{m//s})^2 = 2\,250\,000\,000~\text{J}}= 2,25~\textbf{GJ}$

    Damit können wir die potentielle Energie berechnen:

    $E_\text{pot}=\boldsymbol{-2} \cdot E_\text{kin}=\boldsymbol{-4,5}~\textbf{GJ}$

    Für die Gesamtenergie ergibt sich:

    $E_\text{Ges}=\boldsymbol{-E_\text{kin}= -2,25}~\textbf{GJ}$