30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Kepler'sche Gesetze 06:53 min

Textversion des Videos

Transkript Kepler'sche Gesetze

Mechanik, heute: Die Keplerschen Gesetze. Hallo und herzlich willkommen zu Physik mit Kalle. Wir beschäftigen uns heute, mit den Keplerschen Gesetzen. Für dieses Video solltet ihr euch bereits ein wenig mit Ellipsen auskennen. Was Johannes Kepler, knapp nach 1600, in seinen berühmten Keplerschen Gesetzen aussagte oder genauer, was er über die Form der Planetenbahnen herausgefunden hatte, was der Flächensatz ist und was wir über die Umlaufzeiten aussagen können. So, los gehts. Das 1. Keplersche Gesetz besagt: Planten bewegen sich auf Ellipsenbahnen. Die Sonne steht dabei in einem der beiden Brennpunkte der Ellipse. Für den Fall, dass ihr euch noch nicht so gut mit Ellipsen auskennt, wiederholen wir schnell ein paar grundlegende Details. Hier seht ihr die grob ellipsenförmige Bahn eines Planeten um die Sonne. Die Sonne steht im einen Brennpunkt der Ellipse, den anderen habe ich mit X markiert. Die Ellipse wird durch zwei Achsen geteilt, die Hauptachse und die Nebenachse. Die Hauptachse ist die Längere der beiden. Die Hälften dieser beiden Achsen nennt man a und b. Wobei a, die Hälfte der Hauptachse, große Halbachse heißt und b, die Hälfte der Nebenachse, die kleine Halbachse ist. Die Verbindungslinie zwischen der Sonne und dem Planeten, der sich auf der Ellipsenbahn bewegt, nennt man den Leitstrahl oder Fahrstrahl des Planeten. So weit, so gut. Dann mal weiter zum nächsten Keplerschen Gesetz. Das 2. Keplersche Gesetz nennt man auch den Flächensatz und dieser besagt: Der Fahrstrahl eines Planeten überstreicht in gleichen Zeiten gleich große Flächen. Als die Erde näher an der Sonne war, hatte sie eine höhere Geschwindigkeit. Dennoch überstreicht ihr Fahrstrahl in gleichen Zeiten immer gleiche Flächen. Im Bild links seht ihr ein Beispiel für zwei solcher Flächen. Wir wollen das ganze Mal schnell herleiten. Wir betrachten die zwischen der Fläche t1 und t2 überstrichene Fläche. Der Radius ist rot markiert, die Geschwindigkeit blau. Wir wissen: A= r^->Xv^->/2. Falls ihr das Kreuzprodukt zweier Vektoren noch nicht kennt, dürfte diese Herleitung für euch schwierig zu verstehen sein. Dann empfehle ich euch einfach zum nächsten Kapitel zu springen, oder für die nächsten ca. 1-2 Minuten eure Finger in eure Ohren zu stecken und laut zu singen. Ignoriert es einfach. Ihr braucht es dann nicht zu wissen. So, dann wollen wir mal: Der Drehimpuls L unseres Planeten bezüglich der Sonne ist L=m(r^->Xv^->) und der interessiert uns, weil in ihm r^->Xv^-> vorkommt, also das Doppelte unserer Fläche. Will ich wissen, um wie viel er sich verändert, dann muss ich die Ableitung des Drehimpulses ausrechnen. dl/dt=m(dr^->/dtXv^->+r^->Xdv^->/dt^->). Die Ableitung des Radius nach der Zeit, ist aber nun genau die Geschwindigkeit und die Ableitung der Geschwindigkeit nach der Zeit ist die Beschleunigung. Die Ableitung meines Drehimpulses ist also m(v^->Xv^->+r^->Xa^->). Da wir eine Zentralkraft haben, ist der Radius parallel zu a^-> und v^-> ist sowieso parallel zu v^->. Damit sind die beiden Kreuz-Produkte=0. Die Änderung des Drehimpulses ist also 0, das heißt, mein Drehimpuls ist also konstant. Ich kann ihn ohne Vektoren schreiben als m×r×v×sin alpha. Da also nun mein Drehimpuls und da sich die Masse nicht ändert, damit auch r^->Xv^-> konstant ist, ist auch die pro Zeit überstrichene Fläche r^->Xv^->/2=konstant. Wenn ihr sie noch drin habt, Finger wieder aus den Ohren und auf zum letzten Kapitel. Das 3. Keplersche Gesetz beschäftigt sich damit, wie die Umlaufzeiten verschiedener Planeten sich zueinander verhalten. Es lautet: Das Verhältnis der Umlaufzeiten Tx der Planeten im Quadrat ist gleich dem Verhältnis der großen Halbachsen ax hoch 3. Als Formel finde ich es einfacher zu verstehen: Wir betrachten 2 Planeten, Planet 1 und Planet 2, ihre Umlaufzeiten t1 und t2 und ihre Halbachsen a1 und a2. Dann gilt: T1²/T2²=a1³/a2³ oder anders gesagt: Für jeden Planeten in unserem Sonnensystem ergibt der Bruch T²/a³ denselben Wert. Ich kann also schreiben: T1²/a1³=T2²/a2³ usw. ist immer der Gleiche konstante Wert C. Dies kann man für einen Kreis, der ja immerhin ein Spezialfall einer Ellipse ist, sehr leicht herleiten und das wollen wir uns noch kurz ansehen. Wir benutzen unseren Lieblingsansatz: Die Gravitationskraft fungiert als Zentripetalkraft. Es gilt also: mv²/r=GmM/r². Wir kürzen ein kleines m und ein r hinaus und ersetzen v² durch Omega²r². Dann erhalten wir Omega²r²=GM/r. Mit Omega=2Pi/T wird daraus 4Pi²r³/T²=G×M. Wir bringen Pi² und r³ nach rechts, alles andere nach links und wir erhalten: T²/r³=4Pi²/G×M. Dieser Bruch hängt nicht von der Masse unseres Planeten ab. Das heißt, er ist für alle Planeten gleich und daher konstant. Damit habe ich meine Formel für den Kreis ja bewiesen, denn im Kreis ist die große Halbachse der Radius. Wir wollen noch mal wiederholen, was wir heute gelernt haben.

Die Planeten bewegen sich auf elliptischen Bahnen um die Sonne, die in einem der beiden Brennpunkte steht. Der Fahrstrahl des Planeten überstreicht bei gleicher Zeit immer eine gleich große Fläche.

Für das Verhältnis der Umlaufzeiten zu den großen Halbachsen der Planeten in unserem Sonnensystem gilt: T1²/T2²=a1³/a2³ oder T1²/a1³=T2²/a2³ usw. usw. =konstant. So, das war es schon wieder für heute. Ich hoffe ich konnte euch helfen. Vielen Dank fürs Zuschauen, vielleicht bis zum nächsten Mal, euer Kalle.

9 Kommentare
  1. Wenn es euch zu kompliziert wird, tut einfach die Finger in die Ohren und singt laut XD. Ich kann nicht mehr XD!

    Von Jasmin Steeger, vor fast 2 Jahren
  2. Ich habe bei der letzten Aufgabe der Übung alles richtig in die gegebene Formel eingesetzt und das dann im Taschenrechner ausgerechnet und es kommt keine der angegebenen Lösungen dabei raus.

    Von L. S., vor mehr als 2 Jahren
  3. Also wenn ich die Geschwindigkeit der Erde ausrechnen will muss ich den Umfang eines Kreises berechnen und nicht die einer Ellipse, obwohl die Erde sich in einer Ellipsenbahn befindet?! Warum? Ansonsten alles suppi erklärt :) #Kallebischtderbeschte

    Von Serkan 21, vor mehr als 4 Jahren
  4. wow, danke habs jetzt verstanden ^^

    Von Sralm, vor fast 5 Jahren
  5. Ich habe es super verstanden! und ich bin erst in der 6. Klasse.
    PS. Das lag am Video.

    Von Markus Koch, vor mehr als 5 Jahren
  1. Danke

    Von Deleted User 143540, vor fast 6 Jahren
  2. @Tim: Die große Halbachse a der Erde beträgt ungefähr 149600000km. Na und die Umlaufdauer T die kennst du doch - ein Jahr!
    Lg

    Von Nikolai P., vor fast 6 Jahren
  3. Was ist denn a bzw T von der Erde??

    Von Deleted User 143540, vor fast 6 Jahren
  4. Sehr gutes Video! Ich habe es sofort verstanden und das ist bei mir selten! ;)

    Von H Egal, vor fast 6 Jahren
Mehr Kommentare

Kepler'sche Gesetze Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kepler'sche Gesetze kannst du es wiederholen und üben.

  • Ordne die Schlagwörter den passenden Kepler'schen Gesetzen zu.

    Tipps

    Jede Abbildung symbolisiert ein Keplersches Gesetz.

    Zu jeder Abbildung gehören drei Schlagwörter.

    Die Schlagwörter beinhalten die Hauptaussagen des jeweiligen Gesetzes.

    Lösung

    Das erste Keplersche Gesetz beschreibt das Aussehen einer Planetenbahn, das zweite, wie sich der Planet auf dieser bewegt. Gut abgrenzen kann man das dritte Keplersche Gesetz vom ersten und zweiten, da es dort immer um mindestens zwei Planeten geht, die sich um ein gemeinsamen Zentrum bewegen.

  • Beschrifte die Zeichnung der elliptischen Umlaufbahn eines Planeten.

    Tipps

    Eine Ellipse besitzt zwei Brennpunkte, von denen hier einer leer bleibt.

    Lösung

    Der Planet bewegt sich auf einer elliptischen Umlaufbahn um die Sonne. Die Sonne steht dabei in einem Brennpunkt der Ellipse, der andere Brennpunkt ist leer.

    Die gedachte Verbindungslinie zwischen Planet und Sonne wird als Fahrstrahl oder Leitstrahl bezeichnet. Bei der Ellipse unterscheidet man außerdem die große und die kleine Halbachse a und b.

    Alle Planeten bewegen sich auf solchen Ellipsenbahnen (1. Keplersches Gesetz). Meist sind die Bahnen jedoch nicht so stark elliptisch, wie in der Abbildung dargestellt. Würde man beispielsweise die Umlaufbahn der Erde maßstabsgetreu darstellen, würde sie sich diese scheinbar auf einer Kreisbahn bewegen.

  • Beurteile die Anwendungsgrenzen des dritten Keplerschen Gesetzes.

    Tipps

    Zwei Bedingungen müssen erfüllt sein, damit das dritte Keplersche Gesetz angewendet werden darf.

    Lösung

    Das dritte Keplersche Gesetz darf angewendet werden, sobald mindestens zwei Himmelskörper um ein gemeinsames Zentralgestirn kreisen. Das heißt, es gibt einen Himmelkörper, um den sich zwei oder mehr weitere Himmelskörper bewegen. Und zwar so, dass sich der Zentralkörper jeweils in einem Brennpunkt der Bahnen der anderen Himmelskörper befindet.

    Somit gilt das Keplersche Gesetz immer für alle Sonnensysteme mit einem Zentralgestirn und mindestens zwei Planeten. Darüber hinaus kann es angewendet werden für einzelne Planeten, die mindestens zwei Monde besitzen.

  • Benenne die Kepler'schen Gesetze.

    Tipps

    Aus Übersichtlichkeit sind nur die Umlaufbahnen der Planeten eingezeichnet.

    Lösung

    Die Keplerschen Gesetze beschreiben die Bewegung von Planeten in unserem und anderen Sonnensystemen. Sie geben Aufschlüsse über die Form der Planetenbahnen, über den sogenannten Flächensatz und über die Umlaufzeiten von mehreren Planeten in einem Sonnensystem. Kurz nach 1600 durch Kepler formuliert, dienen sie als Grundlage für viele astronomische Erklärungen und weiterführende Erkenntnisse.

  • Beurteile die Aussagen zu folgender Abbildung.

    Tipps

    Welches Keplersche Gesetz beinhaltet den Flächensatz und was besagt dieser?

    Stell dir die Bewegung des Planeten an den drei Flächenstücken vor: Wo muss er sich beispielsweise schnell bewegen, weil er eine lange Bahnstrecke zurücklegen muss?

    Lösung

    Der Flächensatz ist Inhalt des zweiten Keplerschen Gesetzes. Der Fahrstrahl des Planeten überstreicht in gleichen Zeiten gleiche Flächen. Muss der Planet zum Überstreichen einer Fläche einen langen Weg zurücklegen, besitzt er eine hohe Bahngeschwindigkeit. Ist er nah an der Sonne, ist seine Geschwindigkeit daher besonders groß. Je weiter er sich von der Sonne entfernt, desto kleiner werden die Bahnstücke, die er in derselben Zeit zurücklegen muss. Er wird immer langsamer.

    Bei den gezeigten Flächen ist die daher die Bahngeschwindigkeit bei Fläche 1 am größten und am kleinsten bei Fläche 3.

    Dies kann man auch über die Drehimpulserhaltung argumentieren: Da der Drehimpuls in dem geschlossenen System erhalten bleibt, gleicht der Planet einen größeren Abstand r (würde zur Erhöhung des Drehimpulses führen) durch eine verringerte Bahngeschwindigkeit v (würde zur Verringerung des Drehimpulses führen) aus.

  • Wende das dritte Kepler'sche Gesetz zur Bestimmung der großen Halbachse des Planeten Neptun an.

    Tipps

    $a_1$ muss in der Rechnung in Metern angegeben werden. Die Umlaufzeiten müssen nicht in Sekunden umgerechnet werden, wenn sie beide die gleiche Einheit (Jahre) erhalten.

    $a_1=1,494\cdot10^{11}~m$

    Lösung

    Die Rechnung liefert für die große Halbachse der Bahn des Neptun einen Wert etwa 4480 Millionen Kilometern. Das liegt relativ dicht an dem heute gebräuchlichen Wert von 4495 Millionen Kilometern. Auch das dritte Keplersche Gesetz liefert nur Näherungswerte.

    Generell gilt: Je weiter ein Planet in unserem Sonnensystem von der Sonne entfernt ist, desto länger benötigt er für seinen Umlauf um die Sonne.