Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Trägheitsmoment J

Erfahre, was das Trägheitsmoment ist und wie es sich auf die Winkelbeschleunigung eines Körpers auswirkt. Finde heraus, wie man das Trägheitsmoment berechnet und sieh dir praktische Beispiele an, um das Konzept besser zu verstehen. Interessiert? Dies und vieles mehr findest du im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Trägheitsmoment J

Was ist das Trägheitsmoment?

1/5
Bewertung

Ø 3.8 / 8 Bewertungen
Die Autor*innen
Avatar
Jakob Köbner
Trägheitsmoment J
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Trägheitsmoment J Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Trägheitsmoment J kannst du es wiederholen und üben.
  • Definiere das Trägheitsmoment.

    Tipps

    Was gibt das Trägheitsmoment an?

    Wovon ist das Trägheitsmoment abhängig?

    Lösung

    Das Trägheitsmoment gibt an, wie leicht oder schwer ein Körper um eine gewählte Drehachse rotiert. Dabei ist die Form des Körpers entscheidend. Viel ausschlaggebender aber ist die Verteilung der Masse des Körpers um die Drehachse. Je weiter diese von der Drehachse entfernt ist, umso größer ist das Trägheitsmoment.

    Wenn wir davon ausgehen, dass ein Klebestift und eine Kleberolle die gleiche Masse haben, hat die Kleberolle trotzdem das größere Trägheitsmoment. Bei dem Klebestift ist die Masse sehr nah an der Drehachse verteilt und bei der Kleberolle ist die Masse viel weiter davon entfernt.

  • Gib die Formeln für das Trägheitsmoment an.

    Tipps

    Von welchen physikalischen Größen hängt das Trägheitsmoment ab?

    Wie lauten die Einheiten?

    Lösung

    Das Trägheitsmoment zu berechnen ist relativ schwer. In den meisten Fällen muss eine solche Berechnung in der Schule nicht vorgenommen werden. Wenn doch, dann sind in den meisten Fällen vereinfachte Formeln vorgegeben, die für den einzelnen Körper gelten.

    Wie bei der Translation die Grundgleichung für jede Bewegung $F = M \cdot a$ ist, so ist $M = J \cdot \alpha$ die Grundgleichung für die Rotation.

    Die Berechnung für jeden Körper lässt sich über das Integral $J = \int\limits_mr^2dm$ durchführen. Es gibt die Abhängigkeit des Abstands der Masse zur Drehachse an.

    Wie jedoch bereits gesagt, gibt es für einige Grundformen schon spezifische Formeln. Zum Beispiel für die Kleberolle, bei der die gesamte Masse im Abstand $r$ zur Drehachse verteilt ist. Die Formel dafür lautet: $J = m \cdot r^2$

  • Vergleiche die Trägheitsmomente der Körper.

    Tipps

    Ist der Körper hohl oder mit Masse ausgefüllt?

    Lösung

    Um das Trägheitsmoment abschätzen zu können, musst du dir zunächst die Form des Körpers und die Verteilung der Masse angucken.

    Es gilt: Je weiter die Masse von der Drehachse entfernt ist, desto größer ist das Trägheitsmoment. Das ist also die erste Frage: Ist der Körper hohl?

    Dann ist der nächste Schritt zu überprüfen, d.h., wie viel der Masse aufgrund der Form des Körpers von der Drehachse entfernt ist. Also ist der nächste Schritt zu überprüfen: Welche Form hat der Körper und wie weit ist damit die Masse immer von der Drehachse entfernt?

    Du kannst dir im Allgemeinen merken, dass eine Kugel ein kleineres Trägheitsmoment hat als ein Zylinder. Natürlich nur bei gleicher Masse und Radius der Körper und wenn die Drehachsen durch den Mittelpunkt gehen.

  • Entscheide, ob es sich um ein einfach zu berechnendes Trägheitsmoment handelt.

    Tipps

    Wie ist die Masse verteilt?

    Überlege doch mal, ob du die Formen der Körper einfach beschreiben kannst.

    Lösung

    Um das Trägheitsmoment eines Körpers zu berechnen, gibt es folgende Formel: $J = \int\limits_mr^2dm$.

    Dabei handelt es sich einfach gesagt um die Verteilung der Masse im Abstand zur Drehachse. Also wie ist die Masse um die Drehachse verteilt: Ist sie nah an der Drehachse oder weit entfernt? Ist sie gleichmäßig verteilt, gibt es eine gleichmäßige Oberfläche, usw?

    Mit diesen Eigenschaften der Körper lässt sich die Komplexität des Trägheitsmoments beschreiben. Hat man eine exakte geometrische Form wie eine Kugel oder einen Zylinder, ist die Berechnung des Trägheitsmoments deutlich einfacher als bei einem Körper (z. B. der Gesteinsklumpen) mit vielen Ecken, Kanten, Ausbuchtungen, usw.

    Für die einfachen geometrischen Körper kannst du im Tafelwerk oder im Internet auch Formeln für das Trägheitsmoment finden.

  • Berechne das Trägheitsmoment.

    Tipps

    Wie lautet die Formel für das Trägheitmoment J für eine Vollkugel?

    Überlege, was du mit den gegeben Größen machen musst. (Einheiten, Umformungen)

    Lösung

    Für die Berechnung des Trägheitsmoments musst du dir zunächst die richtige Formel raussuchen. Für die Vollkugel wäre dies: $J= \frac{2}{5}\cdot m \cdot R^2$.

    Anschließend überprüfst du, welche Größen du gegeben hast und welche du für die Berechnung brauchst. Hier hast du den Äquatordurchmesser und die Masse der Erde gegeben. Du brauchst den Radius und die Masse. Also musst du den Durchmesser halbieren.

    Danach überprüfst du, welche Einheiten du hast und welche du brauchst. Zur Erinnerung: Das Trägheitsmoment hat die Einheit $[J]= 1 Nm \cdot s^2 = 1 kg \cdot m^2$. Also musst du die Kilometer noch in Meter umwandeln.

    Nun musst du nur noch die Werte in die Formel einsetzen:

    $ J = \frac{2}{5} \cdot 5,974\cdot 10^{24} kg \cdot (6.378,16 \cdot 10^3 m)^2 = 9,721 \cdot 10^{37} kg \cdot m^2 $.

    Das Trägheitsmoment der Erde ist also $J = 9,721 \cdot 10^{37} kg \cdot m^2 $.

  • Wende die Formeln zur Berechnung des Trägheitsmoments an.

    Tipps

    Wie lautet die Formel zur Berechnung des Trägheitsmoments einer Vollkugel?

    Die Masse der Kugel lässt sich folgendermaßen aus der Dichte berechnen: $ m = \rho \cdot V$.

    Lösung

    Für die Berechnung des Trägheitsmoments musst du dir zunächst die richtige Formel raussuchen. Für die Vollkugel wäre dies: $J= \frac{2}{5}\cdot m \cdot R^2$.

    Anschließend überprüfst du, welche Größen du gegeben hast und welche du für die Berechnung brauchst. Hier hast du den Äquatordurchmesser und die Dichte der Erde gegeben. Du brauchst den Radius und die Masse. Also musst du den Durchmesser halbieren. Und die Masse musst du durch die Dichte und das Volumen bestimmen. Die Formel lautet dafür: $ m= \rho \cdot V$ mit $V = \frac{4}{3} \cdot \pi \cdot r^3$. Damit folgt durch Einsetzen in die Formel: $J= \frac{8}{15} \cdot \rho \cdot \pi \cdot r^5$.

    Danach überprüfst du, welche Einheiten du hast und welche du brauchst. Zur Erinnerung: Das Trägheitsmoment hat die Einheit $[J]= 1 Nm \cdot s^2 = 1 kg \cdot m^2$. Also musst du die Kilometer noch in Meter umwandeln. Nun musst du nur noch die Werte in die Formel einsetzen: $ J = \frac{8}{15} \cdot 5500 \cfrac{kg}{m^3} \cdot \pi \cdot (6.378,16 \cdot 10^3 m)^5 = 9,727 \cdot 10^{37} kg \cdot m^2 $ .

    Das Trägheitsmoment der Erde ist also $J = 9,727 \cdot 10^{37} kg \cdot m^2 $.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.868

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.851

Lernvideos

37.631

Übungen

33.752

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden