Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Zweistufiges Zufallsexperiment mit Beachtung der Reihenfolge

Zweistufige Zufallsexperimente, bei denen die Reihenfolge wichtig ist, spielen eine wichtige Rolle bei der Berechnung von Wahrscheinlichkeiten. Mithilfe von Baumdiagrammen wird visualisiert, wie man die Pfadregeln anwendet. In dem Video werden Beispiele und Lösungswege leicht verständlich erklärt. Interessiert? Das und mehr erfährst du im folgenden Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Zweistufiges Zufallsexperiment mit Beachtung der Reihenfolge

Was versteht man unter einem zweistufigen Zufallsexperiment mit Beachtung der Reihenfolge?

1/5
Bewertung

Ø 4.6 / 60 Bewertungen
Die Autor*innen
Avatar
Team Digital
Zweistufiges Zufallsexperiment mit Beachtung der Reihenfolge
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse - 9. Klasse - 10. Klasse

Zweistufiges Zufallsexperiment mit Beachtung der Reihenfolge Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zweistufiges Zufallsexperiment mit Beachtung der Reihenfolge kannst du es wiederholen und üben.
  • Tipps

    Die Wahrscheinlichkeit eines Pfades wird mit der ersten Pfadregel bestimmt.

    In der zweiten Pfadregel werden Einzelwahrscheinlichkeiten addiert, in der ersten Pfadregel nicht.

    Bei der ersten Ziehung gilt für jeden der drei Ritter dieselbe Wahrscheinlichkeit. Die Summe dieser drei Wahrscheinlichkeiten ist $1$.

    Lösung

    Wir berechnen die Wahrscheinlichkeit, dass Sören im Duell gegen Holm die Rüstung trägt, mithilfe der ersten Pfadregel: Im Baumdiagramm entspricht das Ereignis genau einem Pfad: zuerst Sören und dann Holm.

    Bei der ersten Ziehung mit drei Karten haben alle Ergebnisse die Wahrscheinlichkeit $\frac{1}{3}$. Bei der zweiten Ziehung mit nur noch zwei Karten im Topf haben alle Ergebnisse die Wahrscheinlichkeit $\frac{1}{2}$. Gemäß der ersten Pfadregel werden die Wahrscheinlichkeiten längs eines Pfades multipliziert.

    Die Wahrscheinlichkeit des Ereignisses, dass Sören gegen Holm die Rüstung trägt, ist demnach:

    $\frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}$

  • Tipps

    Mit der zweiten Pfadregel wird die Wahrscheinlichkeit eines Ereignisses aus den Wahrscheinlichkeiten seiner Pfade berechnet.

    Die Wahrscheinlichkeiten der Pfade werden nicht multipliziert.

    Die Wahrscheinlichkeit eines Ereignisses aus mehreren Pfaden ist größer als die Wahrscheinlichkeit eines einzelnen Pfades.

    Lösung

    Wir berechnen die Wahrscheinlichkeit des Ereignisses „Holm wird als Zweiter gezogen“ mithilfe der zweiten Pfadregel. Diese besagt, dass die Wahrscheinlichkeiten der Pfade eines Ereignisses addiert werden, um die Wahrscheinlichkeit des Ereignisses zu berechnen.

    Das Ereignis „Holm wird als Zweiter gezogen“ besteht aus zwei Pfaden: Der eine beginnt mit Sören, der andere mit Wotan, und beide enden mit Holm. Die Wahrscheinlichkeit jedes einzelnen Pfades beträgt $\frac{1}{6}$. Damit ist die Wahrscheinlichkeit des aus zwei Pfaden bestehenden Ereignisses:

    $\frac{1}{6} + \frac{1}{6} = \frac{1}{3}$

  • Tipps

    Ein Pfad mit Wahrscheinlichkeiten $\frac{1}{3}$ und $\frac{1}{2}$ hat die Wahrscheinlichkeit $\frac{1}{6}$.

    Die Wahrscheinlichkeiten der Pfade eines Ereignisses addieren sich zu der Gesamtwahrscheinlichkeit des Ereignisses.

    Alle Pfade zusammengenommen ergeben das Ereignis aller möglichen Ausgänge des mehrstufigen Zufallsexperiments. Diese Wahrscheinlichkeit ist immer $1$.

    Lösung

    Folgende Sätze sind falsch:

    • Die Wahrscheinlichkeit eines Pfades ist die Summe der Wahrscheinlichkeiten längs des Pfades.
    Die Wahrscheinlichkeit eines Pfades bestimmt man mit der ersten Pfadregel. Diese besagt, dass die Wahrscheinlichkeiten längs des Pfades addiert werden.
    • Ein Pfad aus drei Abschnitten, die jeweils die Wahrscheinlichkeit $0,2$ haben, hat die Wahrscheinlichkeit $0,6$.
    Nach der ersten Pfadregel hat ein solcher Pfad die Wahrscheinlichkeit $0,2 \cdot 0,2 \cdot 0,2 = 0,008$.
    • Das Produkt der Wahrscheinlichkeiten aller Pfade ist $1$.
    Die Wahrscheinlichkeiten jedes Pfades sind kleiner als $1$. Daher ist das Produkt ebenfalls kleiner als $1$.

    Folgende Sätze sind richtig:

    • Besteht ein Ereignis aus mehreren Pfaden, so ist die Wahrscheinlichkeit des Ereignisses die Summe der Wahrscheinlichkeiten der Pfade.
    Genau dies besagt die zweite Pfadregel.
    • Die Wahrscheinlichkeiten längs eines Pfades werden multipliziert.
    Das ist die Aussage der ersten Pfadregel.
    • Besteht ein Ereignis aus drei Pfaden, die jeweils die Wahrscheinlichkeit $0,2$ haben, so ist die Wahrscheinlichkeit des Ereignisses $0,6$.
    Hier wurde die zweite Pfadregel korrekt angewendet.
    • Die Summe der Wahrscheinlichkeiten aller Pfade ist $1$.
    Die Summe aller Pfade entspricht dem Ereignis aller möglichen Ergebnisse des mehrstufigen Zufallsexperiments. Dieses Ereignis hat die Wahrscheinlichkeit $1$.
  • Tipps

    Die erste Pfadregel besagt: Wahrscheinlichkeiten längs eines Pfades werden multipliziert. Das Produkt ergibt die Wahrscheinlichkeit des Pfades.

    Die zweite Pfadregel bestimmt die Wahrscheinlichkeit eines Ereignisses aus mehren Pfaden.

    Ein Pfad mit Wahrscheinlichkeiten $\frac{1}{3}$ und $\frac{1}{2}$ hat die Wahrscheinlichkeit $\frac{1}{6}$.

    Lösung

    Die erste Pfadregel bestimmt die Wahrscheinlichkeit eines Pfades als das Produkt der Wahrscheinlichkeiten längs des Pfades. Die zweite Pfadregel bestimmt die Wahrscheinlichkeit eines Ereignisses aus mehreren Pfaden als die Summe der Wahrscheinlichkeiten der Pfade.

    Wir schreiben die korrekt zugeordneten Sätze auf:

    • Ein Ereignis aus drei Pfaden der Wahrscheinlichkeit $0,1$ hat die Wahrscheinlichkeit $0,3$.
    Dies ist eine Anwendung der zweiten Pfadregel.
    • Ein Pfad mit Wahrscheinlichkeiten $0,2$ und $0,5$ längs des Pfades hat die Wahrscheinlichkeit $0,1$.
    Hier wurde die erste Pfadregel verwendet.
    • Das Ereignis aus allen Pfaden hat die Wahrscheinlichkeit $1$.
    Das Ereignis entspricht allen möglichen Ergebnissen des mehrstufigen Zufallsexperiments. Es hat daher die Wahrscheinlichkeit $1$.
    • Ein Ereignis aus drei Pfaden der Wahrscheinlichkeiten $0,1$ und $0,2$ und $0,3$ hat eine Wahrscheinlichkeit $> 0,5$ und $<1$.
    Nach der zweiten Pfadregel ist die Wahrscheinlichkeit eines solchen Ereignisses $0,1 + 0,2 + 0,3 = 0,6$. Das ist größer als $0,5$ und kleiner als $1$.
    • Ein Pfad mit Wahrscheinlichkeiten $0,1$ und $0,2$ und $0,3$ längs des Pfades hat eine Wahrscheinlichkeit kleiner als $0,1$.
    Nach der ersten Pfadregel beträgt die Wahrscheinlichkeit des Pfades $0,1 \cdot 0,2 \cdot 0,3 = 0,006$. Das ist kleiner als $0,1$.
  • Tipps

    Die Wahrscheinlichkeit eines Pfades mit Wahrscheinlichkeiten $\frac{1}{3}$ und $\frac{1}{2}$ längs des Pfades ist $\frac{1}{6}$.

    Die Wahrscheinlichkeit eines Ereignisses aus zwei Pfaden mit Pfadwahrscheinlichkeiten $\frac{1}{2}$ und $\frac{1}{3}$ ist $\frac{5}{6}$.

    Multipliziert man Wahrscheinlichkeiten, so ist das Ergebnis kleiner als die Einzelwahrscheinlichkeiten.

    Lösung

    Mit der ersten Pfadregel bestimmt man die Wahrscheinlichkeit eines Pfades aus den Wahrscheinlichkeiten längs eines Pfades. Diese Wahrscheinlichkeiten werden multipliziert. Die einzelnen Wahrscheinlichkeiten sind kleiner als $1$, sie werden beim Multiplizieren daher kleiner. Somit ist die Gesamtwahrscheinlichkeit kleiner als die Einzelwahrscheinlichkeiten.

    Mit der zweiten Pfadregel dagegen bestimmt man die Wahrscheinlichkeit eines Ereignisses aus mehreren Pfaden. Diese Wahrscheinlichkeiten werden addiert. Die einzelnen Wahrscheinlichkeiten sind größer als $0$, sie werden beim Addieren daher größer. Somit ist die Gesamtwahrscheinlichkeit größer als die Einzelwahrscheinlichkeiten.

  • Tipps

    Zeichne ein passendes Baumdiagramm und überlege, welche Pfade zu dem Ereignis gehören, dass Wotan an dem Duell teilnimmt.

    Prüfe anhand des Baumdiagramms, bei welchen Pfaden bei der zweiten Ziehung Wotan bzw. Holm vorkommen.

    Finde alle Pfade im Baumdiagramm, die Wotan nicht enthalten, und addiere die Wahrscheinlichkeiten der Pfade.

    Lösung

    Folgende Sätze sind falsch:

    • Die Wahrscheinlichkeit, dass Wotan an dem Duell nicht teilnimmt, ist $\frac{1}{2}$.
    Es gibt zwei Pfade, in denen Wotan nicht vorkommt: der Pfad Sören–Holm und der Pfad Holm–Sören. Jeder Pfad hat die Wahrscheinlichkeit $\frac{1}{6}$. Nach der zweiten Pfadregel beträgt die Wahrscheinlichkeit des Ereignisses $\frac{1}{6} + \frac{1}{6} = \frac{1}{3}$.
    • Die Wahrscheinlichkeit für Wotan bei der zweiten Ziehung ist dieselbe wie die für Holm bei der ersten Ziehung.
    Bei der ersten Ziehung befinden sich $3$ Karten im Topf, jede wird mit der Wahrscheinlichkeit $\frac{1}{3}$ gezogen. Bei der zweiten Ziehung sind nur noch $2$ Karten im Topf, die Wahrscheinlichkeit jeder Karte ist daher $\frac{1}{2}$.
    • Die Wahrscheinlichkeit, dass Wotan an dem Duell nicht teilnimmt, ist kleiner als die Wahrscheinlichkeit, dass Sören eine Rüstung tragen darf.
    Es gibt zwei Pfade, in denen Wotan nicht vorkommt. Jeder Pfad hat die Wahrscheinlichkeit $\frac{1}{6}$. Nach der zweiten Pfadregel beträgt die Wahrscheinlichkeit, dass Wotan nicht am Duell teilnimmt, $\frac{1}{6} + \frac{1}{6} = \frac{1}{3}$. Dass Sören die Rüstung bekommt, bedeutet, dass er bei der ersten Ziehung gezogen wird. Dieses Ereignis besteht ebenfalls aus zwei Pfaden, nämlich Sören–Holm und Sören–Wotan. Die Wahrscheinlichkeit ist daher ebenfalls $\frac{1}{3}$.

    Folgende Sätze sind richtig:

    • Die Wahrscheinlichkeit, dass Holm als Erster und Wotan nicht als Zweiter gezogen wird, beträgt $\frac{1}{6}$.
    Das Ereignis besteht genau aus dem Pfad Holm–Sören. Der Pfad hat nach der ersten Pfadregel der Wahrscheinlichkeit $\frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}$.
    • Die Wahrscheinlichkeit, dass Holm und Wotan gezogen werden, egal in welcher Reihenfolge, ist $\frac{1}{3}$.
    Das Ereignis besteht aus den beiden Pfaden Wotan–Holm und Holm–Wotan. Nach der zweiten Pfadregel ist die Wahrscheinlichkeit des Ereignisses $\frac{1}{3}$.
    • Die Wahrscheinlichkeit für Holm und Wotan bei der zweiten Ziehung ist nur dann dieselbe, wenn bei der ersten Ziehung Sören gezogen wird.
    Wird bei der ersten Ziehung Sören gezogen, haben bei der zweiten Ziehung Holm und Wotan dieselbe Wahrscheinlichkeit, nämlich $\frac{1}{2}$. Wird bei der ersten Ziehung Wotan gezogen, so hat bei der zweiten Ziehung Holm wieder die Wahrscheinlichkeit $\frac{1}{2}$. Wotan dagegen ist nicht mehr im Lostopf und hat daher die Wahrscheinlichkeit $0$. Das Analoge gilt mit vertauschten Rollen, wenn in der ersten Ziehung Holm gezogen wird.

    • Die Wahrscheinlichkeit, dass Sören eine Rüstung tragen darf, ist dieselbe wie diejenige, dass Holm an dem Duell ohne Rüstung teilnimmt.
    Das Ereignis, dass Sören eine Rüstung trägt, besteht aus den beiden Pfaden Sören–Holm und Sören–Wotan. Das Ereignis, dass Holm ohne Rüstung teilnimmt, besteht aus den beiden Pfaden Sören–Holm und Wotan–Holm. Beide Ereignisse haben nach der zweiten Pfadregel die Wahrscheinlichkeit $\frac{1}{3}$.
    Beachte aber: Das Ereignis, dass Holm nicht die Rüstung bekommt, enthält zusätzlich die beiden Pfade Sören–Wotan und Wotan–Sören. Es besteht also aus vier Pfaden und hat daher die Wahrscheinlichkeit $\frac{2}{3}$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.224

Lernvideos

38.691

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden