30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Zusammengesetzte e-Funktionen ableiten

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 5.0 / 1 Bewertungen

Die Autor*innen
Avatar
Team Digital
Zusammengesetzte e-Funktionen ableiten
lernst du in der 11. Klasse - 12. Klasse

Grundlagen zum Thema Zusammengesetzte e-Funktionen ableiten

Nach dem Schauen dieses Videos wirst du in der Lage sein, zusammengesetzte e-Funktion abzuleiten.

Zunächst lernst du, wie du zusammengesetzte e-Funktionen mit der Produktregel ableiten kannst. Anschließend lernst du, wie du e-Funktion mit der Kettenregel ableiten kannst.

Zusammengesetzte e-Funktionen

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie natürliche Exponentialfunktion (“e-Funktion”), Ableitung, Produktregel und Kettenregel.

Bevor du dieses Video schaust, solltest du bereits die natürliche Exponentialfunktion bereits kennen.

Außerdem solltest du grundlegendes Wissen zu Ableitungs-Regeln haben.

Transkript Zusammengesetzte e-Funktionen ableiten

„zusammengesetzte e-Funktionen“ ableiten sollst? Keine Sorge, dieses Video wird dich darauf vorbereiten, das nächste Mal asouveräner mit so einer Situation umzugehen. Wir fangen ganz einfach an. Und zwar mit „e hoch x“. Die natürliche Exponentialfunktion ist nämlich unsere Lieblingsfunktion, wenn es um das Ableiten geht. Zumindest sollte sie das sein, denn wenn wir „e hoch x“ ableiten, erhalten wir wieder „e hoch x“ – die Ableitungsfunktion sieht also genauso aus! Diese Grundeigenschaft der e-Funktion speichern wir uns schon mal im Hinterkopf ab. Dann können wir uns ja langsam steigern! Was ist denn, wenn wir die e-Funktion mit einer Zahl multiplizieren? Auch dadurch ändert sich nicht viel. Denn „e hoch x“ ist abgeleitet immer noch „e hoch x“ und der Faktor fünf bleibt uns wegen der Faktorregel einfach erhalten. Na also, tut doch gar nicht weh. Next step: Was ist mit dieser Funktion? Jetzt sieht die Sache schon anders aus. In beiden Faktoren ist ein x enthalten. Daher müssen wir die Produktregel anwenden. Wir teilen also unsere Funktion in die Faktoren „u von x“, und „v von x“. Und leiten zunächst beide Teilfunktionen einzeln ab. „Zwei x Quadrat“ haben wir schnell abgeleitet und wie wir „e hoch x“ ableiten wissen wir ja! Die Ableitung lautet dann nach der Produktregel: „U-Strich mal v plus u mal v-Strich“. Wir setzen die entsprechenden Terme ein, und schon haben wir unsere Ableitungsfunktion. Für die Übersichtlichkeit können wir das „e hoch x“ noch ausklammern. Auch das hat geklappt. Dann mal her mit der nächsten Aufgabe! Aha, das sieht ja auch sehr interessant aus. Hmm, wie gehen wir denn jetzt da ran? Wenn die e-Funktion abgeleitet sich selbst ergibt, dann müsste das hier doch schon unsere Ableitung sein – richtig? Nicht ganz! Der Exponent „vier x hoch 3“ bildet für sich genommen, nochmal einen eigenen, inneren Funktionsterm. Wir können ihn zum Beispiel „v von x“ nennen. Nun müssen wir v noch ableiten, und unseren e-Term mit der Ableitung multiplizieren. Für die, die es ganz genau wissen wollen: Hier haben wir die Kettenregel angewendet. Und wenn wir die Kettenregel bei einer e-Funktion anwenden, ist das einfacher als im Normalfall. Denn die Ableitung der äußeren Funktion, also des e-Terms, bleibt unverändert. Wir müssen nur noch mit der inneren Ableitung, also der Ableitung des Exponenten multiplizieren. Wenn ihr in der nächsten Mathe-Stunde mal einen raushauen wollt: Das nennt man auch nachdifferenzieren. Schauen wir uns noch kurz einen Spezialfall an, den man als echter Kenner unbedingt mal abgeleitet haben sollte. Was machen wir mit diesem Schmuckstück hier? Nun, wir können uns den Funktionsterm zunächst mal als Produkt aufschreiben. Dann erinnern wir uns an die Potenzgesetze. „eins durch e-hoch-x“ können wir auch schreiben als „e hoch minus-x“. So kann die Funktion doch schon viel handlicher abgeleitet werden. Und zwar mit Produkt- und Kettenregel. Um das Produkt abzuleiten, brauchen wir zuerst die Produktregel. Wir haben zuerst die Ableitung des ersten Faktors also „eins mal e hoch minus-x“ plus „x mal die Ableitung von e hoch minus-x“. Sobald in dem Exponenten von e ein Term steht, der über ein einfaches X hinausgeht, müssen wir die Kettenregel anwenden. Also nicht das Nachdifferenzieren vergessen! Wir müssen noch mit der inneren Ableitung multiplizieren. Dann können wir vereinfachen, wieder in die Bruchschreibweise umwandeln, und fertig! Und? Hast du gut aufgepasst? Bei dieser Aufgabe musst du mehrere Ableitungstechniken anwenden, die du in diesem Video gesehen hast. Pausiere das Video doch kurz und leite die Funktion zuerst selbst ab. Dann gibt's die Lösung! Auch bei dieser Funktion sollte es uns ins Auge springen: Wir haben zwei von x abhängige Faktoren. Wir wenden also die Produktregel an. Es gilt wieder: „U-Strich mal v plus u mal v-Strich“! Die Ableitung des Klammerterms ist gleich „minus-vier x“. Und wenn wir „e hoch zwei-x“ ableiten, müssen wir – du hast es längst verinnerlicht – nachdifferenzieren. Und schon haben wir auch diese Funktion abgeleitet. Gar nicht so schlimm wie es aussieht. Wir fassen kurz zusammen. Wenn wir zusammengesetzte e-Funktionen ableiten möchten, sollten wir uns immer daran erinnern, dass die natürliche Exponentialfunktion, wenn wir sie ableiten, grundsätzlich die gleiche bleibt. Auf die ist Verlass! Dann kriegen wir auch etwas größere Brocken – wie diese Funktion, die wir mit unserer „Kettenregel für e-Funktionen“ ableiten können, oder auch Produkte – wie dieses hier – die wir mit der Produktregel ableiten, problemlos aus dem Weg geräumt. Wenn dir also das nächste mal eine zusammengesetzte e-Funktion über den Weg läuft – locker bleiben. Und immer schön nachdifferenzieren!

1 Kommentar

1 Kommentar
  1. Sehr gutes Video, anschaulich erklärt und dazu noch sympathisch🙌.

    Von Cedric, vor 5 Monaten
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

4.000

sofaheld-Level

6.574

vorgefertigte
Vokabeln

10.814

Lernvideos

43.880

Übungen

38.605

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden